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Industrial applications are different

Industrial ML
* People generate data * Machines generate data
* Focus on the virtual world * Focus on the physical world

Examples: E-commerce, web search, NLP Examples: Machine control, commissioning
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Industrial data is scarce

Web ML Industrial ML
* Model what people care about * Machines are designed not to fail
* Relevant data is abundant * Most valuable data is never produced
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Understanding machine data is hard

Web ML Industrial ML
* Data is mostly intuitive * Data requires domain knowledge
* Lack of structure * Knowledge implies expectations

My tree blog
Trees rock!




Industry needs interpretability

Industrial ML

* Inform or influence the person * Create better or safer machines

* Understanding is secondary * Understanding is key

Root Cause Analysis
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What is learning?

» Given a data distribution p(Z) = p(x,y)
* Find f € Fsuch that

Data distribution
/‘ F
Conditional operator \@

Functional of Interest

f&)~y




What is learning?

* Problem: All we have are samples {(x1,y1), ..., (Xn, YN)} Via S

* Find a learning algorithm A : & — % such that

A-S=F
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Learning algorithm
Information operator @
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A learning algorithm

* Choose a loss function {( f(x),y) to measure closeness

* The expected risk R is given by

R() = j Kl y)p,y) dxdy

* Learning algorithm: Choose hypothesis space # C % and use

f € argminR(f)
fex

* Annoyingly, we cannot evaluate R(f) exactly!



A usable learning algorithm

* Approximate the global true risk with the local empirical risk in the training data

N

1
Remp(f) = Z ((f(x0), yi)

i=1

* Learning algorithm: Choose hypothesis space # C & and use

fe argmin Remp(f)
fex

* Not trustworthy in general!

* Need to encode knowledge



How to encode knowledge?

Information operator S Data selection, feature engineering, data augmentation

Hypothesis space # Choice of model, architecture design
Loss function ¢ Choice of norm, regularization

Optimization min Choice of optimizer, initialization, parameter tuning
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Should be simple Should be detailled




Bayesian Machine Learning

p(Z) = p(x,y)



Bayesian Machine Learning

Generating Process

®

p(x,y) = p(y|x) p(x)
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Bayesian Machine Learning

N
p(xy) = [ | pyalxn) p(x)
n=1
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Bayesian Machine Learning

Hypothesis Space

p(X> Y) = p(X)
N £ )= o
J P(Ynlfn) Py | xp, Z) p(Z) dF O O
n=1




Bayesian Machine Learning

Hypothesis Space

p(X> Y) = p(X)
N £ )= o
J P(Ynlfn) Py | xp, Z) p(Z) dF O O
n=1

Learning Algorithm: Find p(|x,y) that explains the data well. os



Bayesian Machine Learning

Bayesian Machine Learning

Find a compromise

p(x,
N _ p(y|x. %) p(%)
H p(%|x’ Y) - p(X, y)

n=1

between the local likelihood and global prior.
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Case study: Wind Propagation

Wind Direction
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Generative process

Wind Fronts
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A Bayesian graphical model

Wind Fronts
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A Bayesian graphical model

Time Alignment

Wind Fronts

Turbine Behaviour
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A Bayesian graphical model

Multi-Output GP

©

Deep GP

Deep GP
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Posterior: Uncertain time alignment
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Posterior: Uncertain time alignment
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Posterior: Uncertain time alignment
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Posterior: Uncertain time alignment
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Comparing samples

Shallow GP AMO-GP
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Comparing samples

Shallow GP
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Ongoing Research

* Reinterpretation of surrogates in BO

* Model global instead of local structure

Deep GP

* RL as a generative model

* Inference over optimal policy

Likelihood?

'Bodin et al. 2019. 17



Industrial learning problems

* Inevitability of uncertainty
* Availability of knowledge
* Need for interpretability

* Inherent handling of uncertainties
* A system to formulate hypotheses

* Good fit for industrial problems
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Exploration can be expensive

* Exploration is cheap... * Exploration can be expensive...

* ...as are mistakes e ...and safety-critical
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Models are known to be imperfect

Web ML Industrial ML
* When in doubt, collect more data * Need to make do with given data
* Uncertainties not so important e Uncertainties are critical
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Experts are needed to label data

* Contextual data available * Labels require domain experts

e Annotation can be automated * Explicit and expensive
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Generalization is necessary

Industrial ML
As data is scarce, experts need to tell us how to generalize aggressively.
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Communication with experts

Industrial ML
We need a common language with experts and automate the boring things.




Communication with experts

Industrial ML

We need a common language with experts and automate the boring things.

%

o * Machine has different states
WW * State changes are rare

. ( | | —l} ’ * Expert chooses relevant data
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