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Industrial applications are different

Web ML

• People generate data

• Focus on the virtual world

Examples: E-commerce, web search, NLP

Industrial ML

• Machines generate data

• Focus on the physical world

Examples: Machine control, commissioning
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Industrial data is scarce

Web ML

• Model what people care about

• Relevant data is abundant

2017 2018 2019

0

50

100

cat dog

moose turbine blade

Industrial ML

• Machines are designed not to fail

• Most valuable data is never produced
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Understanding machine data is hard

Web ML

• Data is mostly intuitive

• Lack of structure

My tree blog

Trees rock!

Industrial ML

• Data requires domain knowledge

• Knowledge implies expectations
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Industry needs interpretability

Web ML

• Inform or influence the person

• Understanding is secondary

My tree blog

Trees rock!
Prediction

Industrial ML

• Create better or safer machines

• Understanding is key

Root Cause Analysis
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What is learning?

Statistical Learning Theory

• Given a data distribution p(𝒵) = p(𝐱, 𝐲)

• Find 𝑓 ∈ ℱ such that

𝑓 (𝐱) ∼ 𝐲

Conditional operator

Data distribution

Functional of Interest

p(𝒵)

ℱ

𝐹
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What is learning?

Statistical Learning Theory

• Problem: All we have are samples {(𝐱1, 𝐲1), … , (𝐱𝑁, 𝐲𝑁)} via 𝑆

• Find a learning algorithm 𝐴 ∶ 𝒮 → ℱ such that

𝐴 ∘ 𝑆 ≈ 𝐹

Datap(𝒵)

ℱ

𝐹

𝒮
𝑆

𝐴

Information operator
Learning algorithm
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A learning algorithm

Risk minimization

• Choose a loss function ℓ(𝑓 (𝐱), 𝐲) to measure closeness

• The expected risk R is given by

R(𝑓 ) ≔ ∫ ℓ(𝑓 (𝐱), 𝐲) p(𝐱, 𝐲) d𝐱 d𝐲

• Learning algorithm: Choose hypothesis spaceℋ ⊆ ℱ and use

̂𝑓 ∈ argmin
𝑓 ∈ℋ

R(𝑓 )

• Annoyingly, we cannot evaluate R(𝑓 ) exactly!
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A usable learning algorithm

Empirical risk minimization

• Approximate the global true risk with the local empirical risk in the training data

Remp(𝑓 ) ≔
1
𝑁

𝑁
∑
𝑖=1

ℓ(𝑓 (𝐱𝑖), 𝐲𝑖)

• Learning algorithm: Choose hypothesis spaceℋ ⊆ ℱ and use

̂𝑓 ∈ argmin
𝑓 ∈ℋ

Remp(𝑓 )

• Not trustworthy in general!

• Need to encode knowledge

9



How to encode knowledge?

Places to encode knowledge

Information operator 𝑆 Data selection, feature engineering, data augmentation

Hypothesis spaceℋ Choice ofmodel, architecture design

Loss function ℓ Choice of norm, regularization

Optimizationmin Choice of optimizer, initialization, parameter tuning

min ℓ 𝑆 ℋ Interpretability
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How to encode knowledge?

Places to encode knowledge

Information operator 𝑆 Data selection, feature engineering, data augmentation

Hypothesis spaceℋ Choice ofmodel, architecture design

Loss function ℓ Choice of norm, regularization

Optimizationmin Choice of optimizer, initialization, parameter tuning

Should be detailledShould be simple

min ℓ 𝑆 ℋ Interpretability
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Bayesian Machine Learning

p(𝒵)

p(𝒵) = p(𝐱, 𝐲)
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Bayesian Machine Learning

Generating Process

𝐱

𝐲

p(𝐱, 𝐲) = p(𝐲 |𝐱) p(𝐱)
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Bayesian Machine Learning

N

𝐱𝑛

𝐲𝑛

p(𝐱, 𝐲) ≠
𝑁
∏
𝑛=1

p(𝐲𝑛 | 𝐱𝑛) p(𝐱)
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Bayesian Machine Learning

N

Hypothesis Space

𝐱𝑛

𝐲𝑛

𝐟𝑛 ℋ

p(𝐱, 𝐲) = p(𝐱)⋅
𝑁
∏
𝑛=1

∫ p(𝐲𝑛 | 𝐟𝑛) p(𝐟𝑛 | 𝐱𝑛,ℋ ) p(ℋ) dℋ
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Bayesian Machine Learning

N

Hypothesis Space

𝐱𝑛

𝐲𝑛

𝐟𝑛 ℋ

p(𝐱, 𝐲) = p(𝐱)⋅
𝑁
∏
𝑛=1

∫ p(𝐲𝑛 | 𝐟𝑛) p(𝐟𝑛 | 𝐱𝑛,ℋ ) p(ℋ) dℋ

Learning Algorithm: Find p(ℋ|𝐱, 𝐲) that explains the data well.
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Bayesian Machine Learning

N

Hypothesis Space

𝐱𝑛

𝐲𝑛

𝐟𝑛 ℋ

p(𝐱, 𝐲) = p(𝐱)⋅
𝑁
∏
𝑛=1

∫ p(𝐲𝑛 | 𝐟𝑛) p(𝐟𝑛 | 𝐱𝑛,ℋ ) p(ℋ) dℋ

Bayesian Machine Learning

Find a compromise

p(ℋ|𝐱, 𝐲) =
p(𝐲 |𝐱,ℋ ) p(ℋ)

p(𝐱, 𝐲)

between the local likelihood and global prior.
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Case study: Wind Propagation

Wind Direction
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Generative process

𝐮

Wind Fronts

Front Turbine

Back Turbine

𝐭

𝐲

𝐭

𝐲

𝐭

𝐲
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A Bayesian graphical model

Front Turbine Back Turbine

Wind Fronts
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𝐮𝟏

𝐮𝐑
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A Bayesian graphical model

Time Alignment

Wind Fronts

Turbine Behaviour
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A Bayesian graphical model

Multi-Output GP

Deep GPDeep GP
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Posterior: Uncertain time alignment
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Posterior: Uncertain time alignment
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Comparing samples
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Ongoing Research

Bayesian Optimization1

• Reinterpretation of surrogates in BO

• Model global instead of local structure

Input

O
b
je
ct
iv
e

Reinforcement Learning

• RL as a generative model

• Inference over optimal policy

Deep GP

Likelihood?

𝐬0 𝐬1 𝐬2 𝐬𝑇

𝐫0 𝐫1 𝐫2 𝐫𝑇

𝐚0 𝐚1 𝐚𝑇−1

𝐉∗

𝐟

𝜋

1Bodin et al. 2019. 17



Summary

Industrial learning problems

• Inevitability of uncertainty

• Availability of knowledge

• Need for interpretability

Bayesian machine learning

• Inherent handling of uncertainties

• A system to formulate hypotheses

• Good fit for industrial problems

...
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Exploration can be expensive

Web ML

• Exploration is cheap…

• …as are mistakes

Industrial ML

• Exploration can be expensive…

• …and safety-critical



Models are known to be imperfect

Web ML

• When in doubt, collect more data

• Uncertainties not so important
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Experts are needed to label data

Web ML

• Contextual data available

• Annotation can be automated

Industrial ML

• Labels require domain experts

• Explicit and expensive



Generalization is necessary

Industrial ML

As data is scarce, experts need to tell us how to generalize aggressively.

−2 −1 0 1 2−4

−2

0

2

4

𝐗

𝐲

−2 −1 0 1 2−4

−2

0

2

4

𝐗

𝐲



Generalization is necessary

Industrial ML

As data is scarce, experts need to tell us how to generalize aggressively.

−2 −1 0 1 2−4

−2

0

2

4

𝐗

𝐲

−2 −1 0 1 2−4

−2

0

2

4

𝐗

𝐲



Generalization is necessary

Industrial ML

As data is scarce, experts need to tell us how to generalize aggressively.

−2 −1 0 1 2−4

−2

0

2

4

𝐗

𝐲

−2 −1 0 1 2−4

−2

0

2

4

𝐗

𝐲



Communication with experts

Industrial ML

We need a common language with experts and automate the boring things.



Communication with experts

Industrial ML

We need a common language with experts and automate the boring things.

• Machine has different states

• State changes are rare

• Expert chooses relevant data
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