Submitted on 15. June 2016
Last revised on 22. June 2017

Master’s Thesis in Informatics

Incorporating Uncertainty into Reinforcement
Learning through Gaussian Processes

Markus Kaiser

Chair for Foundations of Software Reliability
and Theoretical Computer Science
Department of Informatics

Technische Universitdt Miinchen

Computer Vision and Active Perception Lab
School of Computer Science and Communication
Kungliga Tekniska hogskolan

Learning Systems

CT-RDA-BAM-LSY-DE
Siemens

SIEMENS

™

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITAT MUNCHEN

Master’s Thesis in Informatics

Incorporating Uncertainty into Reinforcement
Learning through Gaussian Processes

Integration von Unsicherheit in das Reinforcement Learning mit
Hilfe von GaufSprozessen

Author: Markus Kaiser
Supervisor: Prof. Dr.-Ing. Thomas A. Runkler
Advisors: Dr. Clemens Otte
Prof. Dr. Carl Henrik Ek
Date: 15. June 2016

0

Statement

I confirm that this master’s thesis is my own work and I have documented all sources

and material used.

Munich, 15. June 2016

Acknowledgments

I would like to thank my advisor Prof. Dr.-Ing. Thomas Runkler for giving me the
opportunity of creating my master’s thesis at Siemens and for numerous suggestions
about worthwhile directions for research. I am thankful to my supervisors Dr. Clemens
Otte and Prof. Dr. Carl Henrik Ek for their excellent supervision, for their guidance
and their help in understanding Bayesian reasoning. I am very appreciative of the great
support of Dr. Steffen Udluft and Dr. Alexander Hentschel, who were always open
to questions and who shared their expertise. Thanks to all of you for the numerous
productive meetings and discussions and for your valuable advice.

I would also like to thank my office mates Stefan Depeweg and Daniel Hein for
stimulating discussions and for their support. I am grateful for the positive and friendly
environment created by the whole research group at Siemens.

I sincerely thank my family for their caring support throughout the years and above all
I want to thank Hannah for her endless support, patience and love.

vii

Abstract

In reinforcement learning, an agent has to learn how to make decisions in an unknown
environment in order to maximize a numerical reward. In model-based reinforcement
learning, the experience gained via interaction is represented as a transition model
which can be used to simulate the system’s future behaviour. This thesis is concerned
with reducing the model bias introduced by choosing actions which are optimal
with respect to an imperfect model. Instead of relying on a single deterministic
model, gathered knowledge is represented using Gaussian processes which encode a
probability distribution over all plausible transition models. By averaging over all of
them, the expected long-term reward is calculated, which explicitly incorporates model
uncertainties into long-term planning. A controller is formulated by applying Particle
Swarm Optimization to this expected reward, directly choosing appropriate actions.
Besides formally introducing these tools, this thesis investigates their effectiveness
on a benchmark problem with the task of learning how to balance and navigate a
bicycle. Thereby, multiple approaches of incorporating uncertainties are described and
compared to the classic technique of deterministic predictions.

1X

Zusammenfassung

Im Reinforcement Learning ist es die Aufgabe eines Agenten zu lernen, welche Ent-
scheidungen in einer unbekannten Umgebung eine numerische Belohnung maximieren.
Im modellbasierten Reinforcement Learning wird die durch Interaktion erworbene
Erfahrung in einem Transitionsmodell reprédsentiert, mit dem das zukiinftige Verhalten
des Systems simuliert werden kann. Diese Arbeit beschiftigt sich damit, den sys-
tematischen Fehler zu reduzieren, der durch Entscheidungsfindung auf Basis eines
imperfekten Modells entsteht. Anstatt eines einzelnen deterministischen Modells wird
Wissen mit Hilfe von Gaufsprozessen dargestellt, die eine Wahrscheinlichkeitsverteilung
tiber alle plausiblen Transitionsmodelle darstellen. Unter Beriicksichtigung aller dieser
Modelle wird die erwartete Belohnung iiber mehrere Zeitschritte errechnet, wodurch
Modellunsicherheiten explizit in die Planung integriert werden. Durch Anwendung
von Partikelschwarmoptimierung auf dem erwarteten Reward wird eine Entschei-
dungsstrategie formuliert, die Aktionen direkt mit Hilfe der Modelle wihlt. Neben
der formalen Beschreibung dieser Werkzeuge untersucht diese Arbeit ihre Effektivitat
anhand eines Beispielproblems mit der Aufgabe, ein Fahrrad zu balancieren und zu
navigieren. Dabei werden mehrere Ansétze beschrieben, wie Unsicherheiten in die
Planung integriert werden koénnen, und mit dem klassischen Ansatz deterministischer
Vorhersagen verglichen.

x1i

Contents

[Acknowledgments|

Abstract

[Zusammenfassung|

(1 _Introductionl

[2 The Bicycle Benchmark|

[3_Theoretical Background|

[3.1 Reinforcement Learning| . . .

Model-Based Reinforcement Learning|.

Predictions and Posterior|

Choosing Hyperparameters|.

[3.1.1 Problem Statement] . .
[3.1.2

[3.2 Gaussian Process Regression|
[3.2.1 Definition|
[3.2.2 Kernels|.
3.2.3
3-2-4
3-2:5

Sparse Approximations using Inducing Inputs|.

[3.3 Particle Swarm Optimization Policy|,

Basic Particle Swarm Optimization|

3-3.1
[3.3.2 Choosing Parameters|
3.4 Summary|.

(4

Incorporating Uncertainty in Model-Based Reinforcement Learning|

4.1 Transition Models|.

l4.1.1

Data Sets|.

l4.1.2

Gaussian Process Models| 0.,

l4.2 Predictions without Uncertainties|

l4.2.1

Bicycle Reward Function|, ...

l4.2.2

Long-Term predictions|

vii
ix

Xi

13
13
14
18
19
21
22
26
29
31
35
36
40
43

45

47
51
54

55
58

xiii

Contents

l4.2.3 EvaluationSetup| 0L,
l4.2.4 Results using MAP Predictions|.

4.3

Predictions with One-Step Uncertainties|.

l4.3.1 Long-Term predictions|.
l4.3.2 Results using One-Step Uncertainties|

4.4

Predictions with Multi-Step Uncertainties|

l4.4.1 Propagation of Uncertainties using Linearization|
l4.4.2 Long-Term predictions|.
l4.4.3 Posterior States using the Truncation of Gaussians|
l4.4.4 Results using Multi-Step Uncertainties)

4.5

Discussion of the Approaches|

.6

SUMMATY|. . . . o v vt e

B__Conclusions]

|[A _Bibliography|

[B__Lists of Figures, Tables and Algorithms|

Xiv

91

95

101

Chapter 1
Introduction

Machine learning can be understood as a combination of artificial intelligence and
modern statistics. It is concerned with the development of algorithms which allow
computers to find structure in data and extract relationships within it to represent
it compactly. This allows the computer to generalize the observations presented
and predict the distribution of data in unknown regions without being explicitly
programmed. One branch of machine learning is reinforcement learning (RL). In RL,
the task is to learn how to control a system by interaction and to find a strategy to
achieve high-level goals. In contrast to other kinds of machine learning, reinforcement
learning usually assumes that neither prior knowledge about the behaviour of the
system nor an expert teacher are available. Instead, an uninformed agent starts off by
taking suboptimal actions in order to explore and learn about the system. Having built
a good understanding of the system, the agent can start exploiting this knowledge in
order to achieve its goals.

Reinforcement learning is well-suited to solve problems which are easy to measure and
generate data about but hard to describe and solve mathematically. These include both
tasks in artificial intelligence traditionally solved by the development of specialized
algorithms and problems in optimal control theory, where a dynamic physical system
should be influenced in order to minimize long-term costs. In 1996, the chess computer
Deep Blue was the first artificial intelligence to defeat a world champion in chess
[Hsuo2]. This victory was achieved using tree search and a mostly hand-crafted
evaluation function able to judge the current board in a chess game. In contrast, the
game of Go remained out of reach for artificial intelligences for a long time, since
formulating an equivalent evaluation function is a hard task. In 2016, AlphaGo was
the first Al to defeat a professional Go player [Sil+16]. Instead of relying on expert
knowledge, AlphaGo was trained using reinforcement learning techniques. Starting off
with information gathered from professional matches, AlphaGo gathered experience
about Go by playing against itself and developed its strategies independently.

Chapter 1 Introduction

Dynamic systems in control theory are assumed to be described by a set of known
differential equations. Optimal controllers are obtained by analyzing their algebraic
structure and deriving solutions to the optimization problem of minimizing a cost
function. While such controllers can be shown to be provably correct given the
differential equations, these dynamics are often idealized or simplified. For sufficiently
complicated systems, they cannot be formulated at all. In contrast, reinforcement
learning does not require intricate knowledge about the dynamics but rather relies on
interaction to identify its behaviour. In recent years, RL has successfully been used to
control cars in autonomous driving [Kol+10] and to control complex industrial systems
such as wind or gas turbines [Sch+o7] whose behaviour cannot be described analytically
in full detail.

Besides its roots in Al and control, reinforcement learning has historically been studied
in the context of psychology and animal learning [SB9§]. Trial and error is the most
natural form of learning for humans and animals. An infant learning how to move has
no explicit teacher but rather interacts with the environment and observes its responses.
This way, the infant can obtain knowledge both about the world around them and their
own body. Humans continue to learn by trial and error throughout their lives. When
learning a new skill such as riding a unicycle, humans explore their task through play
in order to get a feeling for the system to be controlled. A human might be careful at
first in order to avoid accidents, but after enough training, their confidence increases
and more complicated maneuvers become possible.

This thesis is concerned with enabling computational agents to develop a measure of
confidence about their understanding of a system. The combined experience an agent
has gathered via interaction can be represented in a model of the world. Since there is
only a limited amount of observations available, such a model is always imperfect and
there may be multiple plausible explanations of the observations. Classical deterministic
approaches of representing such a model have to decide on one explanation of the
data and must trust it to always be correct. During decision-making, an agent may be
forced to generalize and make predictions about the system without having observed
appropriate data. If this generalization is wrong, the agent makes decisions based on
wrong information, which introduces a bias.

Instead of trusting one single model, more reliable information could be obtained by
considering the predictions of all plausible models and combining their results. The
distribution of predictions of the different models yields a measure of uncertainty the
agent has about the future development of the system. This uncertainty can be used
during planning to avoid actions whose impact on the system is unknown and enables
the agent to choose a conservative strategy to avoid risk.

In this thesis presents the bicycle benchmark, a simulation of a dynamic
system. In this system, the agent takes the place of a cyclist and has to solve the task
of both balancing a bicycle and navigating it towards a goal. This system is used
throughout the thesis as an example of a reinforcement learning problem of optimal
control. introduces a mathematical formulation of the general RL problem
and presents both Gaussian processes and the Particle Swarm Optimization-Policy (PSO-
Policy). Gaussian processes are a Bayesian framework which can be used to represent
probability distributions over functions and are used in this thesis to represent the
knowledge of an agent about the system to be controlled. Based on this representation,
the PSO-Policy allows the formulation of a controller. Having established the main
tools used in this thesis, describes how they can be applied to the bicycle
benchmark. It first introduces a deterministic approach to solving the benchmark and
then discusses how information about uncertainties can be used to improve the agent’s
strategy.

Chapter 2
The Bicycle Benchmark

The bicycle benchmark is an example of a dynamic a computer should learn to control.
It was originally defined by Randlev and Alstrem in 1998 [RAg8]. The task in this
benchmark is to balance and navigate a simulated bicycle which travels at a constant
speed.

The computer, or agent, takes the place of the rider of the bicycle. After fixed time
intervals, it has to decide how to influence the bicycle by applying some torque T on
the handlebars to steer or by displacing the center of mass of the bicycle via leaning
over the bicycle by some distance d or both. In order to make its decision, the controller
is given perfect information about the internal state of the simulation. Besides having
to prevent the bicycle from falling over in the short-term, there is also the long-term
goal of navigating to some predefined goal position.

The bicycle is modelled by non-linear differential equations which describe the steering
and leaning behaviour of the bicycle. The speed of the back tyre is considered constant
and independent of the actions of the agent. This results in two important angles to
describe the system. The angle 0 is measured between the front tyre and the frame of
the bicycle and describes the straightness of the bicycle’s path. The angle w measures
the amount of tilt of the bicycle’s frame compared to standing upright. If the absolute
value of w is greater than 12 degrees, the bicycle has fallen over. In addition to the two
angles, their time-derivatives 6 and & define the dynamics of the bicycle. Together with
the bicycle’s position and rotation in euclidean space, this completely describes the
current state of one instance of the bicycle benchmark and is summarized in

The conservation of angular momentum of the tyres results in interactions between
§ and w and their derivatives. The equations presented in the following describe the
dynamics of the system as introduced in [RAg8]. Two simplifying assumptions have
been made: Firstly, the front fork is assumed to be vertical, which is unusual and makes
balancing the bicycle more difficult but is not physically impossible. And secondly,

Chapter 2 The Bicycle Benchmark

the equations are not an exact analytical description, as some second and higher order
terms have been ignored.

An overview of the geometric interpretations of the state variables can be seen in
and [2.2] The interactions between tilt and lean are based on the conservation
of angular momentum which is heavily influenced by the moments of inertia of the
system. The moments of the tyre as displayed in and the moment of the
bicycle and cyclist combined Igc were estimated by the original definition [RA98] as

I == Myr? (2.1)

Igy = gMdrz (2.2)
1

Ia = EMdVZ (2.3)
13

Ipc == ?Mchz + M, (h +dem). (2.4)

The dynamics also depend on multiple constants which are detailed in

The angular acceleration @& of the lean of the bicycle consists of three parts. The first
part describes the gravitation acting on the bicycle and cyclist which pulls the bicycle
in the direction it is already leaning towards. The second one are effects based on the
conservation of angular momentum introduced via a cross-term dependent on 6. The
centrifugal force resulting from of the curved movement of the bicycle forms the last
part. The center of mass can be displaced horizontally by the agent via the choice of
d. The combination ¢ of this displacement and the lean angle of the bicycle is defined
as

d
@ = w + arctan <h> . (2.5)

With this, the angular acceleration @ can be calculated as

W= 1 (sin(p-Mgh
Isc

—cos ¢ (Igc0 - 64 sgn(6) - v° Mar + Mar i Mh .
rf " oM

(2.6)

The angular acceleration § of the orientation of the front tyre is equal to that of the
handlebars because the front fork is assumed to vertical. It is dependent on the torque

Table 2.1: Variables defining the current state of the bicycle system.

Notation Description Value range Unit
0 Angle between the frame and the front tyre —7/6 to /6 rad
0 Rotational speed of the handlebars —10to 10 rad/s
w Tilt of the bicycle —7n/15to 7/15 rad
w Tilting speed of the bicycle —10to 10 rad/s
x Global x-position of the front tyre —100 to 100 m
y Global y-position of the front tyre —100 to 100 m
P Global orientation of the bicycle —mtor rad

Table 2.2: Actions which can be applied to the bicycle system.

Notation Description Value range Unit
d The distance the agent leans sideways by displac- —0.02t0 0.02 m
ing the center of mass
T The torque the agent applies to the handlebars —2to2 N

Table 2.3: Physical constants and their values in the bicycle system [RAgS].

Notation Description Value

CM Center of mass of the bicycle and cyclist in total

c Horizontal distance between the point where the front tyre 66 cm
touches the ground and the saddle
dem Vertical distance between the centers of mass of the bicycle 30cm
and the cyclist
h Vertical distance between the CM and the ground 94 cm
l Distance between the points where the front and back tyres ~ 111cm
touch the ground
M. Mass of the bicycle 15kg
M, Mass of a tyre 1.7kg
M, Mass of the cyclist 60kg
r Radius of a tyre 34cm
v Velocity of the bicycle 10km/h
log Angular velocity of the back tyre o=0/r

Chapter 2 The Bicycle Benchmark

C

Figure 2.1: The bicycle system as seen from above. The position of the bicycle’s green frame is
defined by the x and y coordinates of the blue front tyre and the orientation of the frame
of length | is measured by the angle ¢. Both the front and back tyre move along a dashed
circular path with a shared center point C but different radii r¢ and r,. The radius of the
front tyre is influenced by the steering angle 6.

w

L
cMm 4
h
I4c
w
Ly
(a) The bicycle system as seen from behind. (b) The moments of inertia of a tyre.

Figure 2.2: shows the bicycle when viewed from behind. The angle w describes the
leaning of the bicycle. The center of mass is defined by the green bicycle’s height I and the
leaning distance d. shows the axes of the moments of inertia of the blue tyre. The
axis Iy describes the tyre’s rotation due to movement of the bicycle. The axes I3, and Iy
describe the tyre’s rotation due to leaning and steering respectively.

T applied to the handlebars and the conservation of angular momentum introduced
via a cross-term dependent on w and is calculated as
T — Igyow

[(2.7)

Iy

These differential equations describe how leaning left or right as the driver and turning
the handlebars interact with each other. These internal dynamics are the important
factors when trying to balance the bicycle while ignoring the movement of the bicycle
in space. In order to successfully navigate to the goal position, these movements have
to be taken into consideration. The bicycle state contains three variables which locate
the bicycle in space. The position of the bicycle is defined by the point where the front
tyre touches the ground. This point is independent of the orientation of the handlebars
given by the angle 6 and identified via the two euclidean coordinates x and y. The last
state variable 1 describes the orientation of the bicycle frame relative to the x-axis. If i
is equal to zero, the back tyre is located at a distance of / looking along the positive
x-axis from the point (x,y) and a positive 1 denotes a counter-clockwise rotation.

The back tyre of the bicycle moves at the constant speed v. When keeping the steering
angle of the handlebars constant, the front and back tyre follow two circular paths
with different radii but the same center as can be seen in with the front tyre
following the longer path. The radii 7 and r; can be calculated as

!
= |sin 6]’
[

~ tanf]’

(2.8)

g (2.9)
respectively for § not equal to zero. The singularity of 6 approaching zero yields radii
of arbitrary size as the bicycle’s path becomes more and more straight. If 0 is equal to
zero, the bicycle’s orientation does not change and it moves along a straight line. If it
is not zero, the change of position and orientation can be calculated from the curved
movement.

Since the two tyres are connected with a rigid frame and the front tyre travels on a
longer path, it has to do so at a higher speed. They do however share the same angular
velocity v, on their respective circular paths around the common center point. The
bike’s angular velocity can be derived from the constant speed of the back tyre and is
given by

Vo = —. (2.10)

Chapter 2 The Bicycle Benchmark

Combined with the direction of rotation on the circle defined by the sign of 6, this
directly yields the derivative of the world orientation ¢:

P =sgn(h) - v, (2.11)

The actual speed of the front tyre can be obtained from the common angular velocity
v, and the radius of its path r Iz Together with the orientation of the front tyre, this
gives the derivatives

X = 0o - 15 - cos(ip +6) (2.12)
Y =vo-rs-sin(yp+6) (2.13)
of the position of the bicycle.

The original implementation of Randlev and Alstrem uses an explicit Euler scheme
to evolve the dynamics of the system for a time step. The changes of position and
orientation are calculated using the exact analytical solution of moving the tyres along
their circular paths. To improve accuracy, the implementation developed for this
thesis works with a classical Runge-Kutta-Scheme as described in Numerical Recipes
3rd Edition [Preo7]. The assumption that for a single time step, the bicycle moves
along a fixed circular path is no longer correct when evaluating the dynamics with
Runge-Kutta. Because of this, the changes in position and orientation are integrated
into the scheme.

Let A denote the function which maps a pair of state s and action a to its derivatives
given by

A(s,a) =A((6,0,w,0,x,y,¢),a) = (0,0,0,&,%9,9). (2.14)

This function can be calculated using |equations (2.6), [(2.7)| and |(2.11)[to|(2.13)} Given a
state s; at time t and an action a; which should be applied constantly for a time step T,
an approximation to the state sy can be calculated using the classical Runge-Kutta-
Scheme given by

T
St+r:5t+g(k1+2‘k2+2'k3+k4)/ (2.15)
where the intermediate constants kq to k4 are calculated as
k1= A(st, ar)
T
ky = A(st + 5 k1, a:)

(2.16)

ks = A(s¢ + % ko, ay)

k4 = A(St +T- k3, at).

10

The goal of the bicycle benchmark is to drive the bicycle to a specific position which is
assumed to be a circle at the origin of the coordinate system with a radius of 5. The
bicycle starts in a position which is almost upright, with the state variables 6, 0, w, @
being sampled from Gaussian noise with a standard deviation of one percent of their
value range.

The agent has to choose the two continuous actions d and T described in [table 2.2 every
0.01 seconds, after which they are assumed constant for this time interval. After this
time, the agent is once again presented with the current and exact values of the state
variables and has to make a new decision. One run of the bicycle system creates a time
series of bicycle states and the actions chosen by the agent. The episode ends in failure
if the bicycle falls over and it ends in success if the bicycle reaches the goal. Since it is
possible for the bicycle to drive in circles indefinitely, the episode also ends in failure
after a certain amount of time has passed.

Using the bicycle benchmark as an example, the next chapter introduces reinforcement
learning, a general mathematical description of the problem of learning how to control
a dynamic system. This thesis focuses on model-based reinforcement learning, which
tries to learn the bicycle’s dynamics using general function approximators and use
them to make informed guesses about the future.

11

Chapter 3
Theoretical Background

The bicycle system is an established benchmark problem in a branch of machine
learning called reinforcement learning. This chapter gives a brief introduction into
reinforcement learning and defines the notation necessary to reason about the bicycle
benchmark and similar problems in a mathematical way. The approach used in this
thesis to solve it is called model-based reinforcement learning and is discussed next.

The models in model-based reinforcement learning are used to learn the dynamics of
the system to be controlled in order to be able to make predictions about its future
development. Gaussian processes provide a framework to learn such dynamics in a
way which adds information about the uncertainty of a prediction. This is achieved by
learning a distribution over possible models rather than deciding on one single model.
The uncertainty about the development in a single time step can be used to reason
about the uncertainty of predictions multiple steps into the future.

Being able to make judgments about the future dependent on the next action to take
allows the definition of a controller. Particle Swarm Optimization is introduced as a
way to choose the best action to take based on accumulated predictions.

3.1 Reinforcement Learning

Consider an agent who wants to learn how to learn how to drive a bicycle to a certain
position. In the case of a supervised learning environment, an expert who already
knows how to solve the problem could teach an agent which actions lead to success. In
the absence of such a teacher however, the agent must learn from interaction with the
bicycle.

An agent might start by applying random actions to the system and quickly fall down,
making it impossible to ever reach the goal. This gives the agent an opportunity to

13

Chapter 3 Theoretical Background

learn: It has to avoid falling down in order to have the chance of achieving its objective.
A human agent who falls down from a bicycle feels pain when hitting the asphalt which
they will try to avoid. Such feedback is called a reward (or in this case, a punishment)
and is the basis on which the agent can learn to judge the viability of actions in a
certain state.

After multiple trials, the agent might be able to avoid falling and be able to stabilize
the bicycle. To achieve this, it may have built a basic understanding of how the bicycle
system behaves. It might have recognized that a bicycle which is already leaning on
one side if left alone will fall down because of the gravitational pull or that driving in a
curve means that the centrifugal force pushes the bicycle to the outside. Note that to
gain these insights, it is not necessary for the agent to have an understanding of the
underlying physics. It is enough to observe situations in which the effects play out and
generalize from there.

When the agent has learnt how to stabilize the bicycle by driving small corrective
curves, it has not yet solved the original task of navigating the bicycle to a specific
position. It will have to shift its focus from the short-term goal of avoiding falling
over to the more high-level and long-term task of navigating to the goal position.
Following this trajectory might require some compromises concerning the previous
step of avoiding to fall down, since it is easier to drive straight than it is to drive along
a specific curve. In the case that reaching the goal is time-critical, the optimal trajectory
would be constrained by the minimum radius of a curve the agent can handle. In the
case of a perfect controller, it is constrained by the maximum lean angle w.

The learning task an agent faces when solving the bicycle benchmark can be understood
in a more general sense, which is formulated in the problem statement of reinforcement
learning. It formalizes the ideas of and agent, it’s interaction with a system, and the
positive or negative feedback it receives.

3.1.1 Problem Statement

Reinforcement learning is meant to describe the general problem of learning to control
a system by interaction in order to achieve a predefined goal. The learning entity or
agent has to decide on specific actions to influence its environment which is everything
outside of the agent. The boundary between agent and environment is a well-defined
and narrow interface illustrated in They interact via this interface at specific
discrete time steps, usually indexed with the natural numbers IN.

14

3.1 Reinforcement Learning

—_—
— | Agent
State | | Reward Action
St Tt at
b
i< Environment |<+——
1 St+1

Figure 3.1: The interaction between an agent and its environment in reinforcement learning
happens at discrete time steps. At every time step ¢, the agent observes the current state of
the environment s; and decides on an action 4; which should be performed. Based on this
action, the environment evolves and is observed to be at the state s;,; at the next time step.
Additionally, the agent receives immediate feedback in form of the numeric reward #; .

At every such time step ¢, the agent can observe the environment and receives some
information in form of its state s; € S, where S is the space of all possible states. Based
on this information, the agent has to decide which action a; € A to perform. The space
of all possible actions A is remains constant for all time steps and states.

The decision-process an agent employs in order to choose an action is called the agent’s
policy. A policy is a function which maps states to actions. Policies are often encoded
in closed forms such as linear functions [Dei10].

Definition 1 (Policy)
A policy 7t an agent follows encodes the choice it makes when faced with a decision.
It is a function

.S — A (3.1)

which maps the current state of the system to the action the agent will perform.

Once the agent has chosen an action for time step ¢, the state s, is sampled from
the transition dynamics. These dynamics are unknown to the agent and can be subject
to probabilistic factors such as noise. While the agent will always observe one single
element s, 1 when prompted for the next decision, the transition dynamics return a
probability distribution over the possible next states.

Many problems like the bicycle benchmark have a natural notion of states which are
terminal. If the cyclist falls down or reaches the goal, the interaction between the agent
and the environment comes to an end and there are no more decisions to make. Such

15

Chapter 3 Theoretical Background

tasks are called episodic and one sequence from a start state to a terminal state is called
an episode. Notationally, 7 is defined to be the set of all terminal states with 7 NS = @.
An episode ends when the transition dynamics return a state which is in 7. The set
SUT is called the extended state space ST and combines both non-terminal and terminal
states. A task which does not have terminal states is called continuous and has episodes
of infinite length.

Definition 2 (Transition Dynamics)
The transition dynamics f of a system encode its physical behaviour. These dynamics

f:SxA—P(ST) (3-2)

mapping a state and an action to a distribution over possibly terminal states stay
constant over time but can be probabilistic in nature.

An important observation following from this definition is that together with the state
and actions spaces, the transition dynamics fulfill the Markov property [SB98||. This
means that the distribution of the state s;1; is independent of all states before s; given
s¢. In other words, the transition dynamics only depend on the present state of the
system and are conditionally independent of the past.

At time step t 4 1, the agent observes the environment again in the form of the state
st+1. Additionally, it also receives immediate feedback called the reward r;11. The
reward is a quality assigned to the state transition from s; to s;;1 using the action a;.
The higher the reward, the better the state transition is considered to be. This measure
is independent of the future or past development of the system. In this thesis, the
reward for time step ¢ + 1 is considered to be independent of the state s; and the action
a; and only depends on s;1. It is obtained from a real-valued reward function R such
that 7,11 = R(s¢41).

Definition 3 (Reward Function)
The reward function R assigns a quality to each state in the extended state space and
has the signature

R: ST —» R. (3-3)

This reward is the immediate feedback an agent receives when interacting with the
system.

The goal of the agent is to maximize the sum of all rewards earned throughout an
episode. A greedy agent which is only concerned with the next immediate reward

16

3.1 Reinforcement Learning

might not be the most successful, since it may be necessary to make a decision which is
bad in the short term to gain an advantage in the long run, such as sacrificing a piece
in chess to end up in a better position overall.

The value function is a measure for how good a policy behaves in the long run. Given a
policy and a start state, it is defined as the expected sum of rewards earned in a time
horizon T. Since the transition dynamics are assumed to be probabilistic, the states at
all time steps greater than zero are random variables. Given a distribution of the state
st, the distribution for the next state s¢41 for all € IN- can be calculated as

p(st+1) = /P(St+1 | st,77) p(st) dst (3-4)
where

(S(St_|_1 — St) ifsp €T

f(st41|st,7(se)) otherwise. (35)

p(st+1|st,) = {

Here, § denotes the Dirac-delta-distribution as defined in [Mur12, p. 39] and the notation
f(st+1]| st 71(st)) means the probability of s;y1 under the distribution f(s¢, 77(s¢)). Once
the dynamics have reached a terminal state, all future states will be this same state.
This extends all episodes to potentially infinite length.

The time horizon T can be chosen freely but does not depend on either the current
policy or state. The larger the time horizon, the more far-sighted an agent has to be to
be successful. For large values of T, it can be helpful to focus on rewards earned in the
near future and to weight potential rewards further along with a smaller factor. This
can be achieved using the discount factor oy which is a constant real number between
zero and one. In the case of an infinite time horizon, v must be chosen smaller than
one to ensure the well-definedness of the value function.

Definition 4 (Value Function)

Given transition dynamics f, a policy 7, a time horizon T € INU {oo} and a discount
factor 0 < 7 < 1, the value function V' denotes the expected accumulated reward of
a state and is given by

ST >R
T

Y 7Y R(st)

t=1

V7. (3.6)

s— E

f, 71,80 :s].

If the time horizon is infinite, y must be smaller than 1.

17

Chapter 3 Theoretical Background

Assume now a known distribution of possible start states p(sp). The sets ST and A of
states and actions together with the transition dynamics £, the reward function R and
this distribution p(sg) defines a fully observable Markov decision process (MDP) [SBg8;
Muri2].

The objective of the reinforcement learning problem is to find the most successful policy
to control this decision process under the assumption that no expert knowledge about
the transition dynamics is available. The optimal policy 77* maximizes the expected
value for all start states, that is it solves the optimization problem

" € argmax Eg [V (s)]

7T

= argmax/V"(so)p(SO)dSO. 67

There is a multitude of different approaches for learning good policies. The following
will introduce the important distinction of model-based and model-free methods and
give a high-level view of how the former will be used within this thesis.

3.1.2 Model-Based Reinforcement Learning

To find a good policy, an agent has to gain experience about its environment via
interaction. In direct reinforcement learning [SB98|l, or model-free methods, this experience
is used to update the current policy or an estimation of its value function directly. After
enough time spent with the system, iteratively improving the current policy can
converge to the optimal policy.

In model-based reinforcement learning, the experience is used to learn an internal repre-
sentation of the transition dynamics f. This allows the agent to make predictions about
the future behaviour of the system and therefore approximatively evaluate the value
function without actually interacting with the system. A closed form policy can then

be found by solving the non-linear optimization problem proposed in

Deisenroth [Dei1o] describes an algorithmic scheme called PILCO in which phases
of exploration on the real system to gather more data to improve the internal model
alternate with phases of improvement of the current policy by exploiting the model.
This iteration allows the agent to explore promising directions in the state space using
intermediate policies.

In this thesis it is assumed that all interaction with the system has to happen before
any learning can take place. This assumption is sensible in the context of industrial

18

3.2 Gaussian Process Regression

applications where exploration of a system like a gas turbine can be very expensive
and dangerous and where a potentially bad agent cannot be allowed to choose actions
to perform. Instead of allowing interaction, the agent is presented with a data set
of observations of the transition dynamics in the form of tuples (s¢, a¢, st4+1). These
observations can be obtained via a mix of random exploration and actions chosen by a
sub-optimal controller.

Using an internal representation instead of the real transition dynamics to choose
actions leads to one of the major drawbacks of model-based reinforcement learning. If
this representation does not capture the important characteristics of the original system
well, a policy found to be optimal on the simulation might not lead to good results on
the original dynamics. This effect is called the model bias of a policy.

Reducing this model bias is the main goal of explicitly representing uncertainties
within this thesis. Instead of focusing on one single dynamics model, a probabilistic
representation of all plausible models to explain the observed data will be considered.
This yields a measure of uncertainty of predictions one step into the future and can
be extended to long-term predictions as required in the value function. Assuming
deterministic transition dynamics such as the bicycle benchmark, this measure does not
describe a property of the system but rather the uncertainty about the model itself.

Gaussian Processes provide a framework to represent such a distribution over possible
models for the transition dynamics. The following section will introduce their definition
and derive how they can be used to solve regression problems. The last part of this
chapter will be concerned with introducing a policy-representation based on these
results which does not depend on a closed form solution.

3.2 Gaussian Process Regression

The transition dynamics f: S x A — P(S7) is a function mapping states and actions to
a probability distribution of following states. In order to estimate them using Gaussian
processes, some assumptions about the structure of this function are needed. First, it
will be assumed that both the set of states S and the set of actions A are euclidean
real-valued vector spaces and that the set of terminal states T is empty, that is, ST and
S are assumed equal, requiring that episode endings have to be modelled separately.
And secondly, the probability distribution of the following state is assumed to be
unimodal. This unimodality can result from deterministic transition functions, such
as the one of the bicycle benchmark defined in being disturbed slightly by

Gaussian noise.

19

Chapter 3 Theoretical Background

Estimating a function f on the basis of observations y; = f(x;) +¢; € R with input
vectors x; € RY and a noise term ¢; is a regression problem. Since the number of
observations is finite and the function f lives in an infinite dimensional function space,
the estimation of f is uncertain and based on prior assumptions about its structure.

In classic control scenarios, these prior assumptions often follow from physical descrip-
tions of the system to be modelled. While the physics of driving a bicycle is understood
quite well and can be described using differential equations, a controller for a specific
bicycle depends on some parameters # such as the masses and measures detailed in
In this setting, solving the regression problem corresponds to finding a choice
of parameters #* which explain the observations of the true system best.

In a Bayesian context, instead of deciding on one specific vector of parameters, it might
be more interesting to derive a distribution p(#*) of probable parameter values which
then represents the uncertainty about their true value. When making a prediction for
a new input point x,, this uncertainty can be used to derive a predictive distribution
p(y« | x«,#*), which propagates this uncertainty through the model to the prediction.

This approach represents uncertainty about the correct choice of parameters but as-
sumes that the predefined structure of the function is correct, making it a parametric
model. Such structure has the advantage of making it easier to find the best set of
parameters, since the search space is relatively limited. It does, however, limit the
expressiveness of the model, which can lead to bad performance. A physical description
of the system might be too idealized and not account for all real-world factors, such as
the assumptions of frictionless mechanics or limited turbulences in fluid mechanics.
Accounting for all possible effects can make the model very complicated. This means
that both the number of parameters becomes large and it may be hard to interpret the
model in a physical sense.

Non-parametric models are not based on insights about the concrete structure of the
function to be modelled but rather only make assumptions about properties of the
function itself, such as smoothness or differentiability. Instead of modeling a distribu-
tion of parameter values, a Bayesian non-parametric model is concerned with finding a
distribution p(f*) of probable functions which represents the belief of the model about
the function f to be estimated.

Gaussian processes (GPs) are a state-of-the-art framework for non-parametric regression.
They are a way of representing a probability distribution over functions in a way
which is both computationally feasible and allows for Bayesian inference. This section
introduces Gaussian processes and describes how to encode a prior distribution over
functions to represent preference in the space of all possible functions f. Based on

20

3.2 Gaussian Process Regression

observed data, GPs can be used make predictions about the predictive distribution
Py« | X, f*) taking all functions in the distribution p(f*) into account. Since these
predictions are not computationally cheap, an extension of Gaussian processes for large
data sets, sparse Gaussian processes using pseudo-inputs [SGos], is reviewed last.

3.2.1 Definition

Gaussian processes are a generalization of the Gaussian distribution to function spaces.
A multivariate Gaussian x ~ N (i,) describes a distribution over the finitely many
elements in the vector x [Gauog]. Every such element x; is normally distributed
according to x; ~ N (u;, %;;) with a particular dependency structure between them. For
every pair (x;,x;), their covariance is given by cov|x;, xj| = L;;.

Modeling functions in general requires an infinite number of random variables, one
for every function value. An infinite number of possibly dependent random variables
mapping from the same probability space to the same value space is called a stochastic
process and is represented via a function.

Definition 5 (Stochastic Process)
Given a probability space (Q), F, P), an index set T and a measurable space Y, a
stochastic process X is a function

TxQ—Y
{ (3-8)

(t,w) — X¢(w)

mapping indices t to Y-valued random-variables. For a fixed w € Q, X(-,w) is
called a trajectory of the process [Asty1].

The index set of a stochastic process can be an arbitrary set. It is often interpreted
as a time index which can be both discrete and continuous. A Gaussian process is a
particular stochastic process.

Definition 6 (Gaussian Process)
A stochastic process X is called a Gaussian process if for any finite subset T C T of
its index set, the random variables X; have a joint Gaussian distribution [Ast71].

When using a Gaussian process X to model a function f: A — B, the index set T is
assumed to be A and all random variables are B-valued. The random variable X, then

21

Chapter 3 Theoretical Background

models the function value f(a) for all 2 € A. Sampling a trajectory from X corresponds
to sampling one possible function f*.

Similar to the finite case, the random variables have a dependency structure. Instead of a
mean vector y and a covariance matrix X, a Gaussian process is completely determined
by a mean function ps(a) = E[f(a)] and a covariance function

K(a,a') :==E[(f(a) = ur(a))(f(a') — ps(a’))]
= cov[f(a), f(a')] (3.9)
= cov[X,, X]

with 4,4’ € A. The mean function encodes the point-wise mean over all trajectories
which could be sampled from X. The covariance function is also called a kernel and
describes the interaction between different parts of the function. A function which is
distributed according to a Gaussian process is denoted as f ~ GP (s, K).

For convenience it is often assumed that the prior mean function jif is constant zero.
This assumption is without loss of generality [Raso6|] since otherwise, the observations
(X,y) can be transformed to y' = y — u(X). The Gaussian process based on the
observations (X,y’) then only models the differences to the mean function. It is the
covariance functions which encode the assumptions about the underlying function.

3.2.2 Kernels

Gaussian processes are collections of random variables, any finite subset of which
have a joint multivariate Gaussian distribution. For any pair (Xj, X;) of these random
variables, their covariance is given by the covariance function cov[X;, X;] = KC(i,). The
pairwise covariances in a multivariate Gaussian N (u, L) are given by its covariance
matrix X. For any finite set of random variables, the matrix obtained by pairwise
application of the covariance function is called the Gram matrix.

Definition 7 (Gram Matrix)
Given a non-empty set 4, a function K: A2 — R and two sets X = {x; € A|i € [n]}
and Y = {y; € A|j € [m]}. The n x m matrix

K(X,Y) = Kxy = <K(xi,yj)> (3.10)

i€[n],
j€m)

is called the Gram matrix of K with respect to X and Y [SSo2]. The notation [n]
describes the set {1,...,n} of integers.

22

3.2 Gaussian Process Regression

In order for the Gram matrix to be a valid covariance matrix X of a Gaussian distribution,
it must be positive definite. Kernels are functions which fulfill the property that for
every possible subset of random variables, or more generally every set of elements in
their domain, their induced Gram matrix is positive definite.

Definition 8 (Kernel)
Given a non-empty set A, a function

K: A2 R (3.11)

is called a (positive definite) kernel or covariance function, if for any finite subset X C A,
the Gram matrix K(X, X) is positive definite [SSoz].

The kernel is crucial in encoding the assumptions about the function a Gaussian process
should estimate. It is a measure of similarity of different points in the observed data
and of new points to be predicted. A natural assumption to make is to assume that
the closer together in the domain two points lie, the more similar their function values
will be. Similarly, to predict a test point, training points close to it are probably more
informative than those further away.

But closeness is not the only possible reason two points could be similar. Assume
a function to be modeled which is a possibly noisy sinusoidal wave with a known
frequency. Then, two points which are a multiple of wavelengths apart should also have
similar function values. A kernel which is not only dependent on the distance between
two points but also their position in the input space is called non-stationary. A simple
example of such a non-stationary kernel is the linear kernel.

Definition 9 (Linear Kernel)
For a finite dimensional euclidean vector space R?, the linear kernel is defined as

Kiinear (%, y) == 2"y = (x,y). (3.12)

Consider a function f: R — R which is distributed according to a Gaussian process
with the linear kernel f ~ GP(0, Kinear)- According to the definition of Gaussian
processes, for any two input numbers x, y € R their corresponding random variables
fx and f, have a joint Gaussian distribution

Gy) (o[xonl) (313)

23

Chapter 3 Theoretical Background

where K = Kjipear- Assuming that both x and y are not equal to zero, the correlation
coefficient ¢ of these two variables is given by

cov|fy, fy}

JvarlfdyJvarlfy]
K(x,y)

_ o xy
- VK@) VEWy) NEN

A correlation coefficient of plus or minus one implies that the value of one of the
random variables is a linear function of the other. Any function drawn from this
Gaussian process, such as the ones shown in is therefore a linear function.
This observation generalizes to higher dimensions [Raso6]. Gaussian process regression
with a linear kernel is equivalent to Bayesian linear regression.

olfv fyl =

(3.14)

e {-1,1}.

Because of its restrictiveness, the linear kernel is not very relevant for real-world
applications of Gaussian processes. As described above, the similarity of two data
points x and y is often dependent on their relative position. A kernel which is a function
of x — y is called stationary and is invariant to translations in the input space. The most
important stationary kernel is the squared exponential kernel.

Definition 10 (Squared Exponential Kernel)
For a finite dimensional euclidean vector space RY, the squared exponential kernel (or
RBF kernel) is defined as

Ksg(x,y) = 07 - exp (—;(x —y) A (x - y)> : (3.15)

The parameter 07 € > is called the signal variance and A = diag(5, ..., 13) is a
diagonal matrix of the squared length scales I; € R~.

The similarity of two data points approaches one when they are close together and for
larger distances approaches zero with exponential drop off. It can be shown that this
kernel represents all infinitely differentiable functions [Raso6]. Gaussian processes with
this covariance function are universal function approximators.

The squared exponential kernel is dependent on multiple parameters which influence
its behaviour. In contrast to weight parameters in linear regression or constants in
physical models, these parameters do not specify the estimated function but rather
the prior belief about this function. In order to separate the two, they are called
hyperparameters. The vector of all hyperparameters in a model is called 6.

24

3.2 Gaussian Process Regression

20 | 2 i
1 o 1 i
H \‘\\\\ I 4 Uf N /,/ \\\ -
S~ - 3 N
< = \ N
of nel o s
[”,—"” \\\\\ B [\\ /// \‘\\\\\\\ |
—1} - ey
_2 L 1 ol .
| | | | | | | | | |
-2 -1 0 1 2 -2 -1 0 1 2
(a) Linear (b) RBF with oy =1and I =1
I M
S \
2 [~ \\ B 2 [~ ‘\ K 7
\ ! 1 \\
r AN N - | o~ D h
7’ T \
\ P \ = / \ A
1 [iy P B 1 [BN] T | T 1
O'f N .7 1 ‘\ l’ \\ ! ‘o \\
[\ //’ f af \| Vo \ l’ ‘7/\\ |‘ | i
— 7z 1
R Sa e ‘M l. ,’\\ ¥ " :') b ‘ll/
07 ’ \\ a7 f; 07 ll 1 “\/ 5 II VA ll/l_f;
// \ 1 ,\\ \VA!
I /, \\\ | [\\ Iy \“ ’, X I(|| i
i N ‘\ ,I \ (4N ! \\ /I ll
-1 - s - -1+ ' T ! ~ I
AN - \ oy 1 l
[[—— So__ L | [\\ II 1 ’, 1 |
l ~\\\ N ‘I ”
2 N =2k ‘.‘ /, |
| | | | LN, | |
2 -1 0 1 2 2 1 0 1 2
(c) RBF with 0y = v2and I = 1 (d) RBF with oy = 1and [= 1/4

Figure 3.2: Since the mean function y ¢ is assumed to be constant zero, the kernel specifies the
prior assumptions about the function. A dashed sample function can be drawn by sampling
a multivariate Gaussian with the kernel’s Gram matrix using a grid of discrete sampling
positions. While samples from the linear kernel are always hyperplanes, the RBF kernel
describes arbitrary smooth functions. The hyperparameters [and oy of the kernel describe
the assumed dynamic range in x and y directions respectively.

25

Chapter 3 Theoretical Background

The hyperparameters of the RBF kernel describe the expected dynamic range of the
function. The signal variance a} specifies the average distance of function values from
the mean function. The different length scale parameters /; roughly specify the distance
of data points along their respective axis required for the function values to change con-
siderably. compares sample functions drawn from Gaussian processes with
the linear kernel and squared exponential kernels with different hyperparameters.

These plots show continuous functions being drawn from their respective processes. It
is however only possible to evaluate the Gaussian process at finitely many points and
then connect the resulting samples. Drawing the function values of a finite amount
of sample input points X, from a Gaussian process prior is equivalent to drawing a
sample from the Gaussian N (0, K,.) where K, is a short hand notation for (X, X.).

3.2.3 Predictions and Posterior

In order to use Gaussian processes for regression, it is necessary to combine observations
with a Gaussian process prior f ~ GP(0,K) in order to obtain a predictive posterior.
The N data points observed are denoted as D = (X,y) with y = f(X) + N(0,03])
and |y| = N. The observed function values y are assumed to not be the true latent
function values f = f(X) but rather have some additive Gaussian noise which is
independent and identically distributed for all observations. The variance of this noise

02 is a hyperparameter of the Gaussian process model.

Assuming further that given the latent function and the input points, the observations
are conditionally independent, their likelihood is given by

p(ylf.X)=pylf) prllﬁ
(3.16)

Z

=TINWilfi,o?) =Nyl f,o2)

i=1

because of the assumed noise model. Given some vector of hyperparameters 0, the
definition of Gaussian processes yields a joint Gaussian distribution for the latent
function values f given by

p(f[X,0) = N(f|0,Ky) (3-17)

where Ky = K(X,X) denotes the Gram matrix of the observed data. Combining
the two distributions according to the law of total probability yields the probability

26

3.2 Gaussian Process Regression

distribution of the outputs conditioned on the inputs and is given by

p(y1X,0) = [p(y| f)p(f]X,0)df
= [NWI£EDN (|0 Ky) df (318)
= N(y|0,Ky +021).
Note that this distribution is obtained by integrating over all possible latent function
values f and thereby taking all possible function realizations into account. This
integration is called the marginalization of f. The closed form solution of the integral is

obtained using well-known results about Gaussian distributions which are for example
detailed in [P+o8].

Now consider a set of test points X, for which the predictive posterior should be
obtained. By definition, the latent function values f of the training set and the latent
function values of the test set f. = f(X.) have the joint Gaussian distribution

() o) = ((Delel K)o

K*N K*
Adding the noise model to this distribution leads to the joint Gaussian of training
outputs y and test outputs f, which is given by

() Pex0) = (1)

In this distribution, the training outputs y are known. The predictive posterior for
the test outputs f. can be obtained by applying the rules for marginalization of
multivariate Gaussians [P+08], yielding another Gaussian distribution p(fs« | X, y, Xx).

2
0, [KN +oul KN*])) (3.20)

K*N K*

Lemma 11 (GP predictive posterior)

Given a latent function with a Gaussian process distribution f ~ GP(0,K) and N
training points X with noisy observations of the form y = f(X) + A(0,021). The
predictive posterior f, of the test points X, is then given by

p(fs | X,y, Xs) = N(fi | px, E+), where
-1
pe =Kin (Kn+031) y (3.21)
L. = Ky — Kun (Ky + 021) ' Ky

27

Chapter 3 Theoretical Background

(a) GP Prior (b) GP Posterior

Figure 3.3: shows a GP prior with an RBF kernel. After observing the black data
points, the mean function of the posterior GP in is no longer constant zero.
The dashed function samples of the posterior GP interpolate the data but can be different
in-between. The shaded area represents the point wise mean plus and minus two times the
standard deviation.

This predictive posterior makes it possible to evaluate the function approximation based
on the input at arbitrary points in the input space. Since any set of these points always
has a joint Gaussian distribution, the predictive posterior defines a new Gaussian
process, which is the posterior Gaussian process given the observations. This posterior
process GP (ppost, Kpost) has new mean and covariance functions given by

Hpost(a) = K(a,X) (Kn + (T,%I) - y

1 (3-22)
Kpost(a,b) = K(a,b) — K(a,X) (Kn +031) K(X,b).

Note that the posterior mean function is not necessarily the constant zero function.
shows samples from a pair of prior and posterior Gaussian processes.

Computing the inverse (Ky + 021) ! costs O(N?) but can be done as a preprocessing
step since it is independent of the test points. Predicting the mean function value
of a single test point is a weighted sum of N basis functions y., = K,np where
B = (Kn + dl) ! y which can be precomputed. After this precomputation, predicting
the mean of a single test point costs O(N). To predict its variance, it is still necessary
to perform a matrix multiplication which costs O(N?). Since all of these operations are
dependent on the number of training points, evaluating Gaussian processes on large

28

3.2 Gaussian Process Regression

data sets can be computationally expensive. Before introducing sparse approximations
with better asymptotic complexity, the next section deals with choosing good values for
the vector of hyperparameters 0.

3.2.4 Choosing Hyperparameters

In the previous section, the hyperparameters 6 were assumed to be known and constant,
that is, the prior assumptions about the function to be estimated were fixed. In this
case, Gaussian processes do not have a training stage, since any test point can be
predicted according to the predictive posterior. Usually however, the correct choice
of hyperparameters is not clear a priori. A major advantage of Gaussian processes is
the ability to select hyperparameters from training data directly instead of requiring a
scheme such as cross validation.

In a fully Bayesian setup, the correct way to model uncertainty about hyperparameters
is to assign them a prior p(0) and marginalize it to derive the dependent distributions

p(f) = [p(f16)p(6) o (523)

p(y1X) = [p(y|X,6)p(6) do. (24)

Updating the belief about the distribution of the hyperparameters then becomes part of
the process of obtaining a posterior model. A new distribution is obtained by combining
the prior with the likelihood of the training data observed using Bayes’ theorem:

p(y| X,le) p(6)
p(y|X)

__ply|X,6)p(6) (3-25)
Jp(y[X,6)p(6)de

The integration required in fequation (3.24)|is very hard in practice [Raso6|, since y is a
complicated function of 0. Instead, a common approximation is to use a maximum-a-
postiori (MAP) estimate of the correct hyperparameters. This estimate is obtained by
maximizing p(60 | X,y) and does not require evaluation of the denominator since it is
constant.

p(0|X,y) =

For many choices of priors p(0) this is still a hard problem. But assuming a flat prior
which assigns almost equal probability to all choices of hyperparameters, it holds that

p(6| X, y) xp(y|X,0)

.26
— [plwI£0)p(FIX,0)dF, 020

29

Chapter 3 Theoretical Background

that is, the posterior distribution is proportional to the likelihood term and can be ob-
tained using a maximum likelihood estimate on the marginal likelihood after integrating
out the function values f. Optimizing this term is called a type II maximum likelihood
estimate (ML-II).

The marginal likelihood is an integral over a product of Gaussians obtained from the
noise model and the distribution of function values according to the Gaussian process
definition. It is given by

Py 1X,0) = [p(y|£,0)p(f|0)df
— [N £,02) - N(F10,Kn) df 627)
=N(y|0,Kn+0a)

The solution of this integral is a Gaussian density function [P+08]. For practical reasons,
it is convenient to minimize the negative logarithm of the likelihood which is given

by

L£(6) = —logp(y|X,0)

1 11 N (3.28)
= EyT (Kn + 021 ! y+5 log|Ky + 021| + > log(27).
The estimation of hyperparameters is the solution of the optimization problem
0" € argmin £(0) (3-29)
0

and is calculated using standard approaches to non-convex optimization such as scaled
conjugate gradient (SCD) techniques, since finding the derivatives of £ is comparatively
easy [Raso6|]. The computational complexity of evaluating the likelihood term and its
derivatives is dominated by the inversion of Ky + ¢21.

Since this optimization scheme does not choose parameters of the function approxima-
tion directly but rather changes a small number of broad and high-level assumptions
about it, overfitting does not tend to be a problem for Gaussian processes in general
[Sneo7|]. The sparse approximation of Gaussian processes presented in the next section
chooses a small number of points in the input space to represent a large training
set. The positions of these input points can be interpreted as hyperparameters to the
original Gaussian process and induce a kernel function with many hyperparameters,
where overfitting can become relevant.

30

3.2 Gaussian Process Regression

3.2.5 Sparse Approximations using Inducing Inputs

A major drawback of Gaussian processes in real-world applications is their high
computational cost for large data sets. Assume a data set (X,y) with N training
samples, then the operations on a posterior Gaussian process are usually dominated
by the inversion of the kernel matrix Ky which takes O(N?) time. While this is only
a preprocessing step, the cost of predicting the mean and variance of one test point
remains O(N) and O(N?) respectively. Additionally, these operations have a space
requirement of O(N?). The goal of sparse approximations of Gaussian processes is to
find model representations which avoid the cubic complexities or at least restrict them
to the training phase of finding hyperparameters. This section introduces one type of
approximation based on representing the complete data set through a smaller set of
points.

The most simple approach to achieve this is to only use a small subset of M < N
inducing points of the original training set and learn a normal Gaussian process. This
approach can work for data sets with a very high level of redundancy but does impose
the problem of choosing an appropriate subset. While choosing a random subset can
be effective [Sneo7|, the optimal choice is dependent on the hyperparameters and both
should therefore be chosen in a joint optimization scheme. This is a combinatorical
optimization problem which can be very hard to solve in practice since the function to
be optimized is very non-smooth.

To overcome this problem, sparse pseudo input Gaussian processes (SPGP) [Sneoy] lift the
restriction of choosing inducing points from the training set and instead allow arbitrary
positions in the input space. The original data set is replaced by a pseudo data set (X, f)
of pseudo inputs X and pseudo targets f = f(X) which are equal to the true latent values
of the function function f ~ GP(0,K). Since they are not true observations, they are
assumed to be noise-free.

With known positions of the pseudo inputs and fixed hyperparameters 6, the predictive
posterior of a Gaussian process based on this pseudo data set for test points (X, f«) is
given by

p(fs| Xu, X, f,0) = N (KantKyf f, Kie — Kunt Ky Kt) (3-30)

according to with the notation Ky = K(X, X) meaning the Gram matrix
of the pseudo inputs compared to Ky = K(X, X), the Gram matrix of the original
training data.

The true data set is independent given the latent function and can therefore be assumed
independent given the pseudo data set which should be a good representation of it.

31

Chapter 3 Theoretical Background

The likelihood of the original data under the Gaussian process trained on the pseudo
data set is given by

N
p(y| X, X, f,0) =] [p(n |20 X, f,0)
i=1

N
= EN (yn
=N (y) KnmK;, f, diag (KN KnmK;; KMN) n 021)

=N (y) KnmK;} f, diag (Ky — Qn) + 021)

KumKy)' f, Ky — Kum Ky Knan + 02
(3-31)

with Qyn = KNMK;,IlK MmnN- The additive term (7,% comes from the noise model assumed
about the observations y in the original data set. Rather than using maximum likelihood
on this term to learn the complete pseudo data set (X, f), the pseudo targets f can be
marginalized. This can be combared to the marginalization of the latent function values
f in the derivation of Gaussian processes in fequation (3.27)l Assuming the pseudo
targets to be distributed very similarly to the real data, a reasonable prior for them is
given by

p(fX) =N(f]0,Knm). (3-32)

The marginalization is stated as the integral of a product of two Gaussian distributions
which has a closed form solution and is given by

P(y|X,X,0) = [ply|X,X,7,0)p(f| X)df
~ [P X.X,7,0) N(F |0,Ku) df

e
(s

This SPGP marginal likelihood can be interpreted as the marginal likelihood of a Gaussian
process given the original data set (X, y) infequation (3.18) In this Gaussian process,
the original kernel K is replaced by the kernel Kspgp. With I denoting the indicator
function, it is defined as

Q(a,b) = KamKy; Kntp
Kspcp(a,b) := Q(a,b) +1(a =0b) (K(a,b) — Q(a,b)).

3 AT o\ (3:33)
0, KnmK,y; Ky (KNMKM) + diag (Ky — Qn) + 73,1

0, Qn +diag (Ky — Qn) + 0',%1).

(3-34)

32

3.2 Gaussian Process Regression

This kernel is equal to K when both arguments are identical and equal to Q everywhere
else. For well-chosen pseudo inputs, Qn is a low-rank approximation of Ky [Sneo7].
Because of this identity, an SPGP is a normal Gaussian process with an altered kernel
function. The pseudo inputs X are hidden in the kernel matrix Kps and are additional
hyperparameters to this kernel. This observation directly yields the SPGP predictive

posterior using [lemma 11

Lemma 12 (SPGP predictive posterior)

Given a latent function with a sparse pseudo-input Gaussian process distribution
f ~ GP(0,Kspgp), N training points X with noisy observations of the form y =
f(X) 4+ N(0,021) and M positions of pseudo-inputs X. The predictive posterior f
of the test points X, is then given by

p(fe | X, X, y, X) = N(fs | s, Zs), where
e = Qun (Qn + diag(Kn — Q) +021) 'y (3-35)
Z. = K« — Qun (Qn +diag(Ky — Qn) + (7,31) - OnNx«.

and Qn = KNMK;,IlKMN.

The predictive distribution as written in the previous equations can easily be compared
to the predictive posterior of Gaussian processes in They do however still
involve the inversion of matrices of size N X N and therefore do not offer computational
improvements. Using the matrix inversion lemma [P+08], they can be rewritten to the
form
- . -1
p = KimB™ 'K (diag(Ky — Qn) +031) y
E. = Ky — Kunt (Ky! = B7!) Kus (3.36)
. -1
B = Ky + Ky (diag(Kn — Qn) +021) Ky,

which only involves the inversion of M x M matrices and one diagonal N x N matrix.
Implemented this way, the calculation of all terms independent of the test points has a
complexity of O(NM?) and predicting means and variances takes O(M) and O(M?)
time respectively. The space requirement also drops to O(M?).

Since the positions of the pseudo inputs X are additional hyperparameters in Kgspgp,
they can be chosen together with the hyperparameters of the original kernel 6 using
maximum likelihood as explained in[section 3.2.4} Because they can be placed anywhere
in the input space, the derivatives of the marginal likelihood by their positions are
smooth functions [SGos]. This optimization chooses the positions in such a way that

33

Chapter 3 Theoretical Background

(a) Full GP (b) SPGP

Figure 3.4: The black crosses signify data sampled from a noisy sine function. shows
a full GP trained on the complete data. shows an SPGP with pseudo inputs
located at the dart positions. Since the pseudo function values are marginalized, only their
x-coordinate is meaningful. Three pseudo inputs are enough to approximate the full GP with
reasonable accuracy.

together with appropriate other hyperparameters, the original data is represented as
good as possible. The curse of dimensionality of requiring exponentially many points
in a grid given the number of input dimensions does therefore not necessarily apply to
the number of pseudo inputs needed in an SPGP approximation. shows that
a surprisingly small number of pseudo inputs can be enough to represent the dynamics
of a function.

With a large number of pseudo inputs, the number of hyperparameters can grow large.
This implies the danger of overfitting since the altered Gaussian process has no direct
connection to the original Gaussian process over the complete training set. As an
alternative to selecting pseudo inputs by optimization of the SPGP marginal likelihood,
Titsias proposed a variational approach [Titog] which optimizes a lower bound of the
marginal likelihood of the original Gaussian process. This formulation has the property
of minimizing the Kullback-Leibler divergence between the variational distribution and
the exact posterior distribution of the latent function values of the full GP. Since this
strategy of selecting hyperparameters leads to batter convergence and more robust
results in practice, this variational SPGP is used to model transition dynamics within
this thesis.

34

3.3 Particle Swarm Optimization Policy

In order to solve the control problem of the bicycle benchmark, the next step after
modeling the transition dynamics using Gaussian processes is to find a policy represen-
tation. Instead of a closed form representation of the policy, the choice of which action
to take is made by directly optimizing over the value function using Particle Swarm
Optimization. This technique is presented in the next section.

3.3 Particle Swarm Optimization Policy

Given a starting state, the way to evaluate a policy in the general reinforcement learning
setup is to evaluate its value function as defined in Since the value
is defined as the sum of expected rewards of all future states in the time horizon,
calculating it correctly requires knowledge of the true transition function or, in the case
of deterministic dynamics, interaction with the system. Model-based reinforcement
learning is centered around learning a model of the transition function and using this
representation to approximate the value function.

This allows simulated interaction with the system and can be used to choose optimal
parameters for a parametric closed-form policy formulation. Similar to the comparison
of parametric and non-parametric models in the performance of such
policies heavily depends on the choice of function representation. In a Bayesian setting,
the uncertainties about the transition model should be propagated through to an
uncertainty about the choice of policy parameters and finally marginalized to obtain a
distribution over good actions to take. In order to keep this process computationally
teasible, trade-offs must be made in the flexibility of policy representations. Deisenroth
and Rasmussen recommend the use of rather limited linear policies or non-linear
representations via RBF networks [DR11].

In order to avoid these complexities, this thesis chooses a non-parametric approach. In
contrast to using the expected long-term reward to find optimal choices for parameters
of a policy, the Particle Swarm Optimization-Policy described by Hein et al. in [Hei+16]|
directly chooses optimal actions. When presented with a decision, PSO-P optimizes the
action-value-function V given by

AT 5 R

Vs, :

0

T

Y v R(st)

t=1

(ao,...,uT_l) — IE (337)

f,So,ﬂ0,~~,ﬂT—1]

where f denotes a model of the transition function, sy denotes a state and 7 is the
discount factor. After finding an optimal vector of actions for all decisions in the time

35

Chapter 3 Theoretical Background

horizon, PSO-P applies the first of these actions to the system. Avoiding a parametric
representation allows PSO-P to find actions which, according to the models, are optimal
for the specific situation the agent currently is in, instead of having to find a set
of parameters which is good for all possible states. This, however, comes with the
disadvantage of having to solve an optimization problem for every decision of the
controller, which increases computational cost.

Definition 13 (PSO-P)
The Particle Swarm Optimization-Policy (PSO-P) [Hei+16] chooses actions via direct
optimization of the action value function V and is defined as

S— A

TPSO-P * \ s+ aif, where a* € argmax Vg(a). (3.38)
0 g 4
acA

The optimization over V at time step ¢ yields a vector of optimal actions for the complete
time horizon. The PSO-Policy still only applies the first of these actions and repeats the
optimization at time step t 4 1. This is done to both reduce model bias and profit from
the more accurate information about s¢y1 from the system.

The action value function is itself not probabilistic but is defined as an expected value
dependent on all future states. Since the transition model is Bayesian, evaluating
this expected values implies iterated marginalizations of beliefs about both model
hyperparameters and intermediate states. The dependency of the action value on
the different actions is therefore very complex and finding their gradients for the
optimization is analytically intractable.

This section first introduces Particle Swarm Optimization, a gradient-free heuristic used
in PSO-P to tackle the non-convex optimization problem of finding the optimal action
sequence. After the definition, different choices of parameters are discussed.

3.3.1 Basic Particle Swarm Optimization

To choose an appropriate action for the current state, PSO-P needs to solve a non-convex
optimization problem. Classical non-linear optimization schemes such as the scaled
conjugated gradient technique or Newton methods [Preoy] rely on the evaluation of the
first or even second derivatives of the objective function. In the setting of optimizing
the action value function with respect to all actions at the different time steps, finding
these gradients is a hard problem.

36

3.3 Particle Swarm Optimization Policy

Particle swarm optimization is a heuristic technique which does not assume knowledge
about the derivatives of the objective function and is therefore called gradient-free. It
is a population-based optimization approach, where a number of solution candidates
move through the domain of the target function in search of a good solution. The most
well-known class of population-based approaches, which are often inspired by nature,
are evolutionary or genetic algorithms. Genetic algorithms mimic natural selection by
evaluating a generation of individuals and allowing the most successful to survive and
recombine, giving rise to a new generation of candidates.

In contrast, the set of individuals, or swarm, remains constant in PSO. Instead of
implementing survival of the fittest, PSO is based on social interaction. Every individual,
or particle, flies in the search space with a velocity which is dynamically adjusted
according to its own past experience and the experience of the other particles in the
swarm. While they are initialized randomly throughout the space, they are expected to
collapse on a single point which, ideally, should be the optimum.

More formally, PSO is mostly used in a non-convex optimization setting. Given some
function f: X — R, the problem is to find an x* € X such that

x* € argmax f(x). (3-39)
xeX
While variantes of PSO exist which can handle arbitrary constraints [Engo6|, the basic
variant presented in this thesis assumes that the domain X" of f is a set of the form

X = {x e RY ’ XN <y < x?‘ax}. (3-40)

This set of feasible points X is an axis-parallel cuboid in the finite dimensional real
vector space R?. The boundaries of this cuboid are defined by the vectors x™" and
x™¥ which are both in R? and specify the minimal and maximal value for every
dimension.

The swarm of a PSO run consists of a finite set P of particles. These particles each
have a position and velocity which are both updated for all particles simultaneously
and at discrete time steps. The set of all time steps 7 is usually considered to be the
natural numbers. At every such time step, the objective function value is evaluated
for every particle. Since PSO models social interaction and communication, every
particle has a neighbourhood of particles it communicates with. This communication
influences the particle’s velocity as particles are attracted to positions with good
performance.

37

Chapter 3 Theoretical Background

Definition 14 (PSO Instance)

An instance of the particle swarm optimization (PSO) scheme on the objective function
f: R* — R is defined by the set of particles P. For every time step in 7T, the
particles” positions and velocities are given by the functions

x: PxT — R%, (3.41)
v: PxT = RY, (3.42)

respectively. The position of particle i at time step t is denoted as x;(t) and its
velocity as v;(f). A particle can be influenced by the set of its neighbours given by
the neighbourhood function

N: P = 2P (3-43)

The positions and velocities of the particles are defined using dynamic programming.
The bounded search space allows for a uniform initial distribution of positions and
velocities which are, for every particle i € P, defined as

x;(0) ~ ¥™" +1U(0,1) - <xmax — xmin) , (3-44)
vi(0) ~ U(0,1) - (xmax . xmi“> , (3.45)

where U(0,1) denotes the standard uniform distribution. The update of the positions
only depends on the particle’s current state, such that for every ¢ € 7 it is defined as

xi(t+1) = x;(t) + vi(t). (3-46)

This operation can move particles out of the set of feasible points. Engelbrecht discusses
multiple possible boundary conditions such as circular algebra or reflection [Engo6].
The most simple solution is to stop the particle at the boundary.

Velocities can be thought of as the result of forces pulling on the particles. Ideally,
these forces would originate from the optimum of the function, but this position is
unknown. In classical optimization schemes, gradients are used as the forces as they
point to local extrema. Since gradients are not available, the particles must rely on
other sources of information. At the first time step, no information about the function
or the search space is available, so particle velocities are initialized randomly. At later
steps, the particles have already visited parts of the search space and have gained some
knowledge.

This knowledge is represented by the personal best position y of every particle, which
is the best position in the search space the particle has visited since the first time step. A

38

3.3 Particle Swarm Optimization Policy

particle is pulled towards its own personal best position since for the single individual,
it is the best guess for the position of the maximum. It is defined as

telt]

yi(t) = xi (min argmax f (x; (t/))> : (3-47)

Since the particles are initialized randomly in the search space, most of these personal
best positions are expected to not be very good. Particles at bad parts of the search
space should communicate with their neighbours and be pulled towards the most
successful. For every particle, the best position seen by any of its neighbours ¥ is
defined as

y,(t) =y, (t), where

n* € argmax f(y, ()). (3.48)
neN (i)

The update of the velocity of a particle is a linear combination of these two components
and the previous velocity in order to simulate inertia. It is defined as

Vil 1) = @ wil) 90 1 (10 = xi(0) + 3 G - xi(0) . Gao)

inertia cognitive component social component

The real constants w, 7. and s weight the relative influences of the different compo-
nents and r., s ~ U(0, 1) introduce a stochastic element to the algorithm which enables
some random exploration after the first time step. Since both the cognitive and social
components are proportional to the distance of the particle to either the personal or the
social best position, velocities can become very large. A common solution to avoid this
is velocity clamping which bounds the maximum velocity of a particle to a fraction ¢ of
the size of the input space.

Using the update steps for the positions and velocities, the behaviour of the swarm
P can be calculated for an arbitrary number of time steps. The result x* of the
optimization using PSO is the best position visited by any particle at any time step
before the final iteration ¢, and is given by

x* = Xp* (tfina1), Where

p* € argmax f(y, (Fina)). (350)
peP

Assuming a neighbourhood which transitively connects all particles, an arbitrary
amount of time and a unique global optimum which gets visited by a particle at some

39

Chapter 3 Theoretical Background

time, the swarm collapses to this global optimum, since the best particle attracts all
other particles. While the heuristic is surprisingly successful in practice, the basic PSO
algorithm can be shown to not converge to a single point or to the global optimum in
some scenarios which are not ideal [Engo6].

Since PSO cannot judge whether it has converged to the optimum, standard termination
criteria for optimization have to be employed. Common problem-dependent choices
are a minimum step size between successive best solutions, minimum improvement
of the objective function between successive best solutions or a maximum number of
iterations or iterations without improvement. Besides these criteria, there are many
other variable parameters in PSO such as the number of particles or the structure of
the neighbourhood function.

3.3.2 Choosing Parameters

The performance of basic PSO depends on choices for multiple parameters, namely the
number of particles in the swarm, the structure of the neighbourhood, the number of
iterations and the constants in the velocity update step. Since it is a heuristic algorithm,
good of these parameters are problem-dependent and it is hard to give mathematical
proofs. This subsection describes the empirical findings of this thesis and summarizes
the recommendations given by Engelbrecht in [Engo6].

As with many other optimization algorithms, there are two important trade-offs when
deciding on parameter values. PSO evaluates the objective function O(|P|-|7|) times,
about once per particle and time step. This introduces the first compromise between
computational time and the quality of the result. Both a higher number of particles
and time steps can be expected to improve the overall best position, up to a point of
saturation where the algorithm converges. Therefore, this product should be as large
as the available computational resources allow. The minimum number of function
evaluations required is highly dependent on the structure of the search space. Too few
iterations can terminate the search prematurely, not giving the swarm time to collapse
to a good solution. On the other hand, too few particles can mean that relevant parts of
the search space are never visited.

Dividing computational power between the number of particles and the number of
time steps introduces the second trade-off of exploration and exploitation. The more
particles there are in the swarm, the more diversity is there in the initial positions of
the swarm. During the first few iterations of PSO where particles are just starting
to influence each other, more unknown parts of the search space will be visited and

40

3.3 Particle Swarm Optimization Policy

() - O A = ¢
C@/ \@/) Q@/ \ oL
-

C/@\ /@Q O @/@Q
U U

(a) Ring topology (b) Star topology

Figure 3.5: Neighbourhood topologies define the social interaction between particles in a swarm.
shows a ring topology with six particles, where every particle is connected to its
neighbours and itself. Since every particle is connected to exactly three other particles, the
average degree of connectivity A is one half. The special case of the ring topology where
every particle is connected to every other particle is called the star topology and is shown in

therefore more of the search space will be explored. If |P| is increased in expense of the
number of iterations, more particles mean a higher chance that some of them find good
parts of the search space. However, fewer iterations can mean that there is less time for
the swarm to collapse towards these good parts and search them more thoroughly to
exploit the gained knowledge. In this thesis, PSO is used to optimize in the space of all
future actions in the time horizon. Given a time horizon of 15 and two actions per time
step, this space is 30-dimensional. To ensure good coverage, 250 particles were used
during the experiments.

The feature separating PSO from other population-based optimization schemes is
social interaction. Particles in the swarm communicate with their neighbours to
obtain additional knowledge and move towards better parts of the search space. The
structure of this neighbourhood is determined by the neighbourhood function N and
the performance of PSO depends strongly on its structure. The neighbourhood function
is constant and describes a topology which is independent of the actual positions of
the particles. The information flow through this network is described by the average
degree of connectivity and the average distance between two arbitrary particles.

41

Chapter 3 Theoretical Background

The average degree of connectivity Ay is the average fraction of all available particles a
particle is connected to. It the degree of connectivity is high and the average distance
between two arbitrary particles low, information about a good position in the search
space propagates quickly to all particles and the swarm will tend to collapse sooner.
For simple or unimodal objective functions, this behaviour can be very beneficial, since
it lowers the number of iterations required for the swarm to collapse towards the global
optimum. For more complex problems however, the swarm is in danger of prematurely
collapsing in a local optimum without good exploration of the search space.

Engelbrecht describes a number of different social network structures. This thesis
uses the ring topology where every particle communicates with itself and a number of
immediate neighbours as shown in A higher degree of connectivity can be
achieved by increasing the number of immediate neighbours a particle is connected
to. This topology guarantees transitive connections between every particle while still
allowing for enough exploration since knowledge must potentially pass through several
particles to reach a particle on the other side of the ring. Neighbourhoods move
smoothly around the ring and overlap, which means that this topology does not favour
the formation of clusters of particles in the search space. The special case of the ring
topology where A/ is one is the star topology as shown in In this topology,
every particle is connected with every other particle, which implies that the PSO will
quickly converge towards the best solution found by the swarm.

Having established a swarm of particles with a neighbourhood N/, the constants
w, Yc and 7 in the velocity update in lequation (3.49)| define the relative influences
of the different kinds of information a particle has gathered to its trajectory. The
cognitive weight 7. and the social weight s describe the trust of a particle towards
its own experiences and the experiences of its neighbours. If 7, is equal to zero,
the communication of the particles is ignored and every particle performs a local
optimization independent of the rest of the swarm. On the other hand, if 7. is zero in a
star topology, every particle would be attracted towards the single best known position
and PSO turns into a stochastic hill-climber [Engo6|]. The strength of PSO comes from
weighting the two aspects, so a common choice is to set both constants to similar values.
The inertia weight w is meant to ensure smooth trajectories and is set to be between
zero and one to allow the swarm to converge. Eberhart and Shi suggest setting w to
0.7291 and both 7, and 7, to 1.49618 [ESoo; Clegg].

The velocity clamping factor { defines the maximum absolute value of the velocity
per dimension to be given by v™& = . (x™¥ — x™in) A small value avoids erratic
movement of the particles by jumping over huge parts of the search space in one time
step. Like the weight factors, the velocity clamping factor is defined to be constant

42

3.4 Summary

Table 3.1: The PSO parameters used in this thesis.

Parameter Description Value
P Number of particles 250
|7 Maximum number of time steps 8o
N Neighbourhood topology Ring
AN Average connectivity in the neighbourhood 0.1
w Inertia weight 0.72981
Ve Cognitive weight 1.49618
Ys Social weight 1.49618
g Velocity clamping factor 0.1

throughout a PSO run within this thesis. It is chosen as 0.1 which allows a particle to
cross the complete space in comparatively few iterations but still limits its dynamic
range.

In the experiments of this thesis, the convergence behaviour of PSO was not problematic.
For other problem instances, time dependent values of the constants can be used to
influence the behaviour of the algorithm. It may be interesting to switch focus from
exploration in the early time steps to exploitation in the later time steps and finally
force convergence. This can be achieved by adaptively changing the different weights
or the velocity clamping factor [Engo6].

The choices for the parameters of the PSO used in this thesis are presented in
The problem of optimizing a vector of actions in PSO-P is very high dimensional.
Because of this, the ratio of number of particles to number of time steps leans towards
a higher than usual number of particles. This is compensated for with a high average
connectivity in the ring neighbourhood. The different weights and the velocity clamping
factor are standard choices since they proved to be successful.

3.4 Summary

This chapter presented the mathematical framework of reinforcement learning to
describe solutions to the bicycle benchmark presented in With Gaussian
processes and the PSO-Policy it introduced the two main tools used in this thesis
to solve it in a Bayesian way. The next chapter introduces a standard approach to

43

Chapter 3 Theoretical Background

controlling the bicycle with PSO-P and compares it to two strategies which incorporate
uncertainty into their decision making process.

44

Chapter 4

Incorporating Uncertainty in
Model-Based Reinforcement Learning

Chapter 3|introduced reinforcement learning as a general mathematical framework
to describe the problem of controlling a bicycle in the benchmark presented in
This thesis is concerned with model-based reinforcement learning, where the
transition function of the system to be controlled is represented with some function
approximation which is learnt from observations of the system and is used to make
predictions about the future. Learning a model of the true system introduces model
bias, where actions considered to be good with respect to the model’s predictions can
show bad performance in reality because the model is incorrect. In order to reduce this
bias, Gaussian processes can be used as they do not only yield one specific function
approximation but a distribution over all plausible models. This uncertainty about
the correct model can be propagated through to predictions about specific test points
and instead of a single point, Gaussian processes predict a Gaussian distribution about
possible function values.

Modeling the transition dynamics allows the prediction of a state s;41 given a concrete
pair of state and action (s¢, a;) for the previous time step. Assuming a deterministic
model which yields exactly one posterior state, the long-term prediction of states multiple
time steps into the future reduces to iterated one-step predictions. Given a reward
function R as detailed in it is possible to evaluate the action value function
V of PSO-P and thus directly use the model to extract a policy, since the expected value
inlequation (3.37)|is a simple sum of deterministic values.

In the Bayesian context however, the transition model predicts a distribution over poste-
rior states. This complicates long-term predictions since the uncertainty of intermediate
states has to be propagated through the nonlinear transition model to accumulate
the uncertainties of multiple predictions. Additionally, the reward function must be
formulated in such a way that it is possible to evaluate the expected reward for all time

45

Chapter 4 Incorporating Uncertainty in Model-Based Reinforcement Learning

steps. Once these problems are solved and the action value function can be calculated,
PSO-P can be used in the same way as in the deterministic case to choose appropriate
actions.

Based on the bicycle benchmark, this chapter compares the classical deterministic
long-term predictions to two approaches of integrating uncertainty into the predictions.
The first section describes the creation of data sets and the design-choices made to
obtain suitable models. These models are then interpreted as deterministic to obtain
a base-line for comparison in the next section. The last two sections describe how to
use uncertainties in the planning process. The first approach is to use the one-step
uncertainties of the Gaussian process models in the reward function but to still create
long-term predictions using deterministic states. The second fully Bayesian approach
completely propagates state uncertainties both to the reward function and subsequent
states.

4.1 Transition Models

The goal in the bicycle benchmark is to learn to both balance a bicycle and to ride it to
a target position. The state of a bicycle, as described in consists of the real
valued vector (6, 0, w,w,x, y,1), where 0 is the angle of the handlebars, w is the vertical
angle of the bicycle frame, x and y are euclidean coordinates and is the orientation of
the bicycle. The bicycle starts in almost upright position and the task of the controller
is to choose the actions (d, T) at every time step, where d is the horizontal leaning
displacement of the driver and T is the torque applied to the handlebars at every time
step. The transition dynamics are derived from a physical approximation of the system
and are completely deterministic.

This thesis assumes that the actor is not allowed to interact with the system in order to
evaluate or improve its policy. In contrast, the agent is presented with a predefined data
set of observations of the system obtained with a simple and sub-optimal controller.
This constraint is meant to mimic industrial systems where it is comparatively cheap
to obtain measurements of running systems but allowing an agent to explore is either
very expensive or a safety concern. It is therefore not possible to apply an on-line
learning scheme to the system or to explore in specific directions in order to improve
the dynamics model.

This section first describes how data sets are sampled from the bicycle benchmark in
order to simulate this constraint. These data sets are then used to train the Gaussian
processes used by PSO-P.

46

4.1 Transition Models

4.1.1 Data Sets

The bicycle benchmark’s dynamics are introduced in by defining the deriva-
tives of the state variables and choosing values for the relevant constants in
Given a starting state and an appropriate number of actions, these derivatives can
be used to approximate the future behaviour of the system using iterative numerical
methods for approximating ordinary differential equations. For this thesis, the bicycle
benchmark was implemented in Python [VDgs5|] with NumPy [WCV11] and using the
classical Runge-Kutta scheme [Kuto1].

In their experiments, Randlov and Alstrom [RA98|] chose a time discretization of
0.01 seconds. During this time, the action applied by the agent remains constant
and after one such time step, the agent can choose a new action. This results in a
controller frequency of 100 Hz. The experiments in this thesis are based on the same
time discretization of 0.01 seconds but for computational reasons only allow the actor to
choose an action every ten time steps, keeping it constant for the time steps in between.
This yields a controller frequency of 10 Hz. The choice of time discretization is the only
free parameter in the transition dynamics for the bicycle system described in
The resulting transition dynamics used for the interaction of the controller and the
system are called fpicycle below.

Applying a controller to the bicycle benchmark produces time series beginning at some
starting state and ending when the cyclist either falls down or reaches the goal. It is
assumed that no expert knowledge is available, so the data sets available for learning
transition dynamics should not be based on a controller which can successfully balance
the bicycle. Instead, this thesis chooses an uninformed controller which applies random
actions to the system.

|Algorithms 4.1{to |4.3| describe how data sets were created for the experiments. A data
set consists of both complete trajectories and single random samples from the state
space. A trajectory always starts in an upright position. The state variables 6, 0, w and
w are all set to zero, while the remaining positional variables are sampled uniformly.
This is both a sensible assumption about the distribution of starting states and also
increases the mean lengths of the sampled trajectories when compared to more random
starting states. As shown in [figures 4.1/and |4.2a} an average trajectory in the data set is
quite short, since random actions are not suitable to balance the bicycle.

shows this in more detail, as it depicts the values of w for a typical trajectory.
While the bicycle starts in an upright position, it quickly starts leaning heavily towards
one side and, since the controller does not choose actions to stabilize the bicycle, falls

47

Chapter 4 Incorporating Uncertainty in Model-Based Reinforcement Learning

Algorithm 4.1 Sampling bicycle transitions

Let fpicyce denote the transition function of the bicycle benchmark. The minimal and
maximal values for the state variables and the actions can be found in and

1: function SAMPLEBICYCLESTATE

0,6,w,w) + N(0,1/4- diag (§max gmax ,max ,max
g

x U(min xmax)

y <_ U(mm max)

¥+ U(—m,)

return (6, 9 w, W, x,Y,P)

AN L S

7. function SAMPLEACTION
8: d < U(dmin, gmax)

9: T «— U(Tmin’ Tmax)
10: return (d,T)

11: function SAMPLETRANSITIONS(N)
12: fori < 1,N do

13: S; < SAMPLEBICYCLESTATE()

14: a; < SAMPLEACTION|)

15: 51{ «— fbicycle(sir ui)

16: return ((s1,a1,57),(s2,a2,85),...,(sn, an, sy))

Algorithm 4.2 Sampling a bicycle trajectory

Let fpicycle denote the transition function of the bicycle benchmark.
1: function SAMPLEBICYCLESTARTSTATE
2: (L _ _ _xY,P) < SAMPLEBICYCLESTATE()
3: return (0,0,0,0,x,y,¢)

function SAMPLETRAJECTORY
So < SAMPLEBICYCLESTARTSTATE()
t<0
while s; is not terminal do
a; < SAMPLEACTION()
St41 < fbicycle(st/ at)
10: t+—t+1

11: return ((so, ao,51),(s1,41,82),...,(St—1, Ar—1,5¢))

L PN T B

4.1 Transition Models

Algorithm 4.3 Sampling a bicycle data set

1: function SAMPLEMIXEDBICYCLEDATASET(N)
2 D+ o

3 while |D| < N do

4 T < SAMPLETRAJECTORY()

5 R < SAMPLETRANSITIONS(|T|)
6 D+ DUTUR
7 return D

10

y position [m]
(@]
[
|

—10} .

—-20 .

| 4 |

—30 1| .

| | |
—-30 —20 —10 0 10 20 30

x position [m]

Figure 4.1: The x and y coordinates of the front tyre in representative episodes in the training
set with marks at the starting states. Since random actions cannot successfully balance the
bicycle, episodes are fairly short and end with the bicycle falling over.

49

Chapter 4 Incorporating Uncertainty in Model-Based Reinforcement Learning

T B
2,000 - M 2 15

8 = B
_s | il
2 1500 : %
Q. —

L 4 O
5 1 Eoop .
53 1,000 + 1 3
= I | N il
2 500 | . %

- i} | |

0 (Hﬂﬂﬂmﬁ; \ 15 \ \ | | | |
0 5 10 15 20 25 0 5 10 15 20 25
Episode length Time step
(a) Histogram of episode lengths (b) The variable w for one episode

Figure 4.2: shows the distribution of episode lengths in a typical training set. Most
trajectories are between five and ten time steps long, with a clear peak at six steps.
shows the development of the angle w for an exceptionally long episode. Even for long
episodes, the bicycle quickly starts leaning towards one side and does not recover. The last
value of w is in the valid range of values, since the last transition which results in a terminal
state is not part of the training set.

over. The sampled trajectories do not contain many state transitions where the bicycle
drives straight or the actions counteract falling.

In order to reduce this bias, the data set also contains random samples from the
complete state space as shown in [algorithm 4.3} While those random samples add more
coverage of the state space of the system, they also increase the difficulty of the learning
problem. Not every combination of angles in the state space is sensible and can be
reached from an upright starting state by applying actions. The transition models
therefore also have to learn irrelevant information about the dynamics. A heuristic
to reduce the amount of improbable states is to not sample the angles uniformly but
rather to sample them from a broad normal distribution around zero, resampling values
which fall outside of the range of allowed values. Since terminal states are modelled
separately, both the last transition of a trajectory and all samples which result in a
terminal state are removed from the data set.

50

4.1 Transition Models

f(s,a4)

—6 | | |

—6 0 6

Ch

Figure 4.3: Since observations are completely certain, the transition models have no uncertainty
at the black observations. The further away from observations a test point is, the higher the
uncertainty becomes. Since Gaussian processes are non-degenerate, uncertainties do not
converge to zero away from the observed data. Instead, for values with absolute value larger
than six, the transition model falls back to the prior.

4.1.2 Gaussian Process Models

The Gaussian process models for the transition dynamics are trained using data sets of
the form D = {(s;, a;,s}) € S x Ax S|i € [N]} of pairs of states and actions and their
corresponding following state. The following states s] = fyicycle(Si, @;) are obtained
form the transition dynamics. Since the transition dynamics of the bicycle benchmark
are deterministic, these observations have no probabilistic element and they are not
noisy. The model f of the transition dynamics is a compact statistical representation of
this collected knowledge and is to be used to predict successive states of unobserved
combinations of states and actions (s, dx).

Besides predicting a concrete following state, the model should provide a measure
about the uncertainty of its predictions. Since there is no randomness in the dynamics
themselves, this uncertainty comes from the imperfect information about the true
system dynamics and is dependent on the location of both the training data and the
required predictions. If a query is made to the model in a part of the state space in
which it has not seen many observations, the model should express its uncertainty and
not assume that its best guess is close to the truth.

51

Chapter 4 Incorporating Uncertainty in Model-Based Reinforcement Learning

The Gaussian processes presented in represent a distribution over all plausi-
ble transition dynamics given a data set. In the x-axis represents pairs of
states and actions while the y-axis represents the successive state. Since the observations
are noise-free, the GP is completely certain about predicting them and, since it assumed
a smooth RBF-prior, it is also confident about predicting states close to the observed
data. Between the data points, uncertainties are higher since there are many different
models which are plausible. Gaussian processes are called non-degenerate, since for
predictions far away from the training set, the predicted uncertainty does not converge
to zero. In contrast, for parts of the input space without any knowledge, the GP falls
back to the prior assumptions about uncertainties and the mean function. Given a large
enough data set which is spread out through the complete state and action space, the
model becomes more and more confident about its predictions and converges towards
the true transition dynamics.

Gaussian processes as presented in this thesis can only model functions with univariate
output. Approximating successive states requires multivariate predictions however.
While there do exist extensions of Gaussian processes for multidimensional output
[Raso6], a common solution is to train D separate GPs, one for every dimension in the
state space RP. While this requires more training time, it allows choosing a different
set of hyperparameters for every dimension. Since the training set does not contain
transitions which result in terminal states, the transition models do not know about the
terminal conditions for trajectories. The signature of the function represented by the
transition model is f: S x A — S, where S = RP and A = RF. Similar to the absence
of terminal states, the transition models are also not aware of the rectangular boundaries
of the state space described in which means that it is possible for the transition
models to predict illegal states, which also have to be handled separately.

All models are trained using the squared exponential kernel presented in
The bicycle benchmark represents a physical system, which makes smoothness of
the transition function a natural assumption. The RBF kernel is a common choice
in Gaussian process regression when no special knowledge about the shape of the
transition function is available. Experiments with other kernels and combinations of
kernels showed no difference in terms of mean squared error on a test set.

Opposed to learning successive states directly, the training targets for the dth dimension
are the differences to the current state given by

As; g = foicycle(Si, Ai)a — Sig = Si g — Sids (4.1)

where i € [N] and d € [D]. This can be advantageous since differences tend to vary
less than the original function. Learning differences can also introduce independences

52

4.1 Transition Models

in the data, since predicting the change in position of the bicycle only depends on the
direction of movement but not on the previous position. Having learned models for the
differences, the mean and the variance of the Gaussian posterior for the partial model
for the d-th dimension p(f;(s«, a«)) is given by

IE[fd<S*; a*) | Sy, u*] =Syd T+ IE[AS*,d ‘ Sk, a*}/

(4-2)
var(fi(s«, ax) | Sx, ax] = var[As, ;| S«, ax],

respectively, since the prior state is for now considered constant and non-probabilistic.
Uncertainties in the predictions only originate from the amount of confidence expressed
by the models for the differences. The values of the expected value and variances are

calculated according to

Since the different Gaussian processes are trained independently of each other and
their training sets only contain their respective output dimension, their predictions are
conditionally independent given the input. With the predictive distribution for the
single dimension being Gaussian, the joint predictive state distribution is also Gaussian
with a diagonal covariance matrix and is given by

P(f (s« ax) | Sx,ax) = N'(f(sx, ax) | s,), where
Elfi(ss,ax) | 4, as]
Hr= : (4-3)
E[fp(sx, ax) | 55,]
L = diag (var[fi(s«, ax) | s« ax],...,var[fp(s«, ax) | s+, ax]).
This diagonal covariance matrix illustrates the implicit independence assumption of the
different output dimensions introduced by training one model per output dimension.

While this assumption is not true in most cases, it can be used as an approximation
and generally yields good results.

The state of the bicycle system is given by a vector (6, 0, w,w,x, v,) composed of the
internal dynamics of the bicycle and its position and orientation in euclidean space.
During simulation with the transition model, the coordinates were transformed to polar
coordinates given by

¢(x,y) = atan2(y, x),

) = — 2 (4-4)

where atan2 is the arctangent function with two arguments. Polar coordinates uniquely
represent a two-dimensional point by its angle to the x-axis and its distance to the

53

Chapter 4 Incorporating Uncertainty in Model-Based Reinforcement Learning

origin. This representation both increases model performance and simplifies calculating
the bicycle’s relative position to the goal in the origin.

Additionally, representing both ¢ and ¢ as numbers between —7 and 7 leads to a loss
of information. While two angles with absolute value close to 7t but opposite signs
are close together on a circle, their representations have a large euclidean distance. A
Gaussian process using the RBF-Kernel cannot recognize their similarity. In this case, it
is possible to choose a specialized periodic variant of the squared exponential kernel
which recognizes periodicity. Equivalently, an angle can be represented as a complex
number on the unit circle, replacing it by its sine and cosine. Therefore, the internal
representation of a bicycle state in the simulation which is given by a vector

s=(0,0,w,w, 1) € R’ (4.5)
is transformed to the augmented state
§=(0,0,w,w,sin ¢,cos @, r,sinp,cos) € R’ (4.6)

when presented to the GPs. The transition model consists of seven Gaussian processes,
each with nine-dimensional input.

The models are implemented in Python using Titsias’s sparse variational GP regression
implemented in GPy [GPy12] and trained using expectation maximization as presented
in The optimization of the likelihood function is calculated using scaled
conjugated gradients with multiple restarts to avoid local minima.

The performance of the transition models is highly dependent on the size of the training
set N and the number of inducing inputs M. For N smaller than 35000, the performance
of the transition models for long-term predictions is not good enough to allow PSO-P
to succeed for any of the approaches presented below. Conversely, for large N and M
larger than 250, the models are good enough such that PSO-P finds perfect solutions
for all approaches. The experiments in this thesis focus on choices for N and M which
are between these extremes and where information about the model uncertainties can
be used to improve performance. The next section presents the classic approach of
long-term predictions without the use of uncertainty information, which is used as a
baseline for comparison for the following techniques.

4.2 Predictions without Uncertainties

The transition model trained on a predefined data set allows the prediction of a
successive state distribution p(s1) given a deterministic pair of a state and an action

54

4.2 Predictions without Uncertainties

(so,a0). To evaluate the action value function V, two extensions need to be made.
Firstly, beyond specifying the goal, does not define a concrete reward function.
This section introduces a variant of the reward function used by Randlev and Alstrom
in [RA98].

And secondly, for a time horizon T longer than one step into the future, the predictive
state distributions p(s1) up to p(sr) are required. Since the GP dynamics model
returns a Gaussian predictive distribution for all states beyond the starting state to
account for the model uncertainty, all states beyond the starting state are no longer
deterministic. In order to mimic a classic non-Bayesian model without a measure
of uncertainty, the approach presented in this section discards this information and
considers the maximum-a-posteriori estimation to be the deterministic prediction of the
transition model. Having established the deterministic mode of evaluating the action
value function, this section finally introduces the evaluation setup used in this thesis
and discusses the results of applying this technique to the bicycle system.

4.2.1 Bicycle Reward Function

Solving the bicycle benchmark is a composite problem. An agent has to both learn
to balance a bicycle and drive to the goal. Instead of having to solve the two tasks
one after the other, they both have to be solved simultaneously, constantly switching
between them. While an agent is in control of the bicycle’s balance, it can try to drive
towards the goal. If any action applied to the system leads to the danger of falling over
however, the agent has to quickly change its focus towards preventing this.

Without expert knowledge available, the controller must learn this distinction au-
tonomously, given the reward function. The most basic and uninformed reward
function possible assigns positive reward for reaching the goal, a punishment (in the
form of negative reward) for falling over and weights all other states equally somewhere
between the two extremes. While this can be enough to teach the short-term task of
avoiding to fall down, the agent has no incentive of driving towards the goal. For most
situations, the goal cannot be reached within the time-horizon of one PSO-P instance.
In this setting, PSO-P would optimize towards a trajectory for which the chance of
falling down is minimal. This trajectory is a circle with large radius [RA9§].

To give the controller a motivation of reaching the goal, it has to receive some hint
about the correct direction to drive. Encoding this information in the reward function
goes against the assumption of the complete absence of expert knowledge. If it is too
detailed, it introduces the risk of significantly simplifying the learning problem or

55

Chapter 4 Incorporating Uncertainty in Model-Based Reinforcement Learning

pushing the agent towards a policy which is only locally optimal. This reduction of the
hard problem of finding the goal to a series of easier problems of driving in the correct
direction and then going straight is called shaping [SB98; RA98].

The hint towards the goal encoded in the reward function should be a term which
represents information which is local in the sense that its value can change considerably
within the time horizon. The most simple term to consider is a punishment based
on the current distance to the goal. This formulation is problematic however, since
the agent should not care about the actual distance rather than the change of distance
with respect to the previous state, which cannot be expressed in the reward. Using the
distance itself, an increase in reward would express movement in the correct direction.
However, for any non-linear punishment, the amount of increase is dependent on
the current position in the input space and can lead to numerical problems if it gets
too small. If it were linear, the punishment might at some point be larger than the
punishment for falling. At this point, the agent’s correct choice would be to fall down
as quickly as possible.

In order to avoid these problems, the reward function used in this thesis is based on the
current angle between the frame of the bicycle and the direction towards the goal. Since
the goal’s position is at the origin of the coordinate system, this angle can be calculated
as the difference of the current rotation of the bicycle ¢ and the angular component of
its polar coordinates in space ¢. It is in the agent’s interest to minimize this angle, since
if it zero, the agent is heading towards the goal on the shortest route possible. As the
bicycle moves at a constant speed, a successful trajectory which locally minimizes this
angle is also a globally optimal trajectory, since it results in the shortest path possible.

Instead of a linear reward based on the difference, this thesis chooses a quadratic
saturating reward function as proposed by Deisenroth et al. in [DFR15]. The quadratic
saturating reward function is a Gaussian density function normalized to a value of
one at its maximum. It behaves locally quadratic around this maximum and shows
exponential drop off towards zero for large deviations from the mean.
compares the saturating reward function to a linear one. The Gaussian reward is more
forgiving for small errors around zero but punishes large deviations more, which is
a good behaviour for the bicycle benchmark since it is often good enough for the
bicycle to only approximately head towards the goal. If the bicycle has reached the
goal, the agent receives a constant reward of two. This is double the reward which can
be obtained for any state which is not in the goal. Similarly, the reward for any state
where the bicycle has fallen over is zero, which is less than for any non-terminal state
in the benchmark.

4.2 Predictions without Uncertainties

| | |
0 e 0 p

AY

Figure 4.4: The blue quadratic saturating reward function is a Gaussian probability density
which has been renormalized to a maximum value of one. When compared to the dashed
piecewise linear reward function, the saturating reward is more forgiving for small errors in
the angle difference AY, but punishes large deviations more.

Definition 15 (Bicycle Reward Function)

Given the set S* of possible states of the bicycle benchmark and the sets Tgoal
and Tien Of all terminal states where the bicycle has reached the goal or fallen
respectively, the bicycle reward function is defined as

ST R
2 ifs e T 1
Rbicycle .] goa (47)
s 40 ifs € ﬁallen
27T0—a2ngle N(a! o, aﬁngle) otherwise

where AY = |s — ¢s| € (—m, 7] denotes the difference between the bicycle’s
heading and the goal given a state s and Ugngle is a positive real constant. The
Gaussian density function N is normalized to a maximum value of 1.

The agent does not receive negative reward for falling down. Instead, the reward is
zero. The agent is still punished when falling down though, since the episode has to
end and the agent is not able to collect additional reward by driving towards the goal
at later time steps. The width o2, gle of the saturating reward was chosen to be (7/2)?, a

57

Chapter 4 Incorporating Uncertainty in Model-Based Reinforcement Learning

compromise between an emphasized peak at zero and sufficiently large derivatives at
the extreme values —7 and 7.

4.2.2 Long-Term predictions

The models for the bicycle transition dynamics are Gaussian processes with the as-
sumption that their underlying space is R?, a complete vector space. The set S of
valid non-terminal states in the bicycle benchmark is an axis-parallel cuboid however,
whose axis-wise boundaries are defined by the vectors s™" and s™®*. The minimal and
maximal values for every variable can be found in The transition models
transform the euclidean coordinates x and y to the polar coordinates ¢ and r. Their
intervals of valid values are given by the intervals (—7, 7r] and [0, 100] respectively.

A state of the bicycle benchmark is terminal if the bicycle has either reached the goal or
if it has fallen over. The goal is defined as a circle around the origin with radius five. A
bicycle has fallen if the absolute value of the angle w is larger than 7/15. If the bicycle
is inside the goal area but has also fallen down, the state is defined to be successful.
Using these constraints, the set of terminal states 7 and the set of non-terminal states
S are defined as

Troal = {s eR |r, < 5}, (4.8)
lnallen = {S S R ’ |ws’ > %} \ 7;;0&11/ (4~9)
S = {s e R’ ’ Vi:s; € [s?ﬁ“, s;“ax] } \ Tgoal/ (4.10)

respectively, where 7 = 7?50&11 U Ttalen- The set of all possible states in the bicycle
benchmark is given by ST := S U 7. Note that ST is not equal to IR7. A state where
is greater than 7t or where 6 is greater than 7/2 is considered physically impossible. This
is unknown to the transition models and it is possible for them to predict impossible
states. Since these extreme states are rare, this thesis considers all physically impossible
predictions to be predictions of the closest possible value. A prediction of 7/6 + € for 0
is interpreted as a prediction of 7/e.

Gaussian processes are Bayesian models which predict values by averaging over all
plausible latent functions, resulting in a Gaussian belief about the prediction. In order to
simulate a deterministic transition model, this first approach for long-term predictions
discards this belief and only predicts a single successive state. The most plausible
choice for this single successive state is the maximum-a-posteriori estimation given by

58

4.2 Predictions without Uncertainties

6 [rad]
I REN

SR o

\
B

0 5 10 15

w [rad]

Time step Time step

Figure 4.5: Colored long-term predictions for one time horizon using MAP estimates and
starting from a deterministic state compared to the dashed simulation. After about half the
time horizon, iterating MAP-prediction produces considerable errors.

the maximum of the posterior density function. With a deterministic state s; and an
action a;, this MAP estimate of the transition model f is given by

argmax p(s¢41 | ¢, ar) = argmax f(S¢+1 | St, at)
St+1€]R7 St+1€]R7

= argmax N (s¢+1 | pre41, Zeg1) (4.11)
St+1€]R7

= {pt41}.

A Gaussian distribution’s density function has a unique maximum at the mean.

The transition model is trained using observations in § and is unaware of terminal
states. Since states at all time steps are deterministic, terminal states can easily be

59

Chapter 4 Incorporating Uncertainty in Model-Based Reinforcement Learning

modelled as fixed points in the function defined as

StTxA—>ST
Sltvﬁpi St ifs; €T (4.12)
(st,ar) — .
E[f (st at)] otherwise,

where the expected value of f (s, a¢) can directly be computed using Given
a time horizon T, a starting state sg and a vector of actions (ay, ..., ar—1), this function
can be used to calculate the intermediate states s)'A” to sYAT using dynamic program-
ming. compares these iterated MAP-predictions with the correct evolution
of the bicycle system in an example. Only the angles 8 and w and their derivatives are
shown in the picture, since they define the dynamics of the bicycle. The position and
orientation of the bicycle are derived from those variables and do not play a role in

long-term predictions.

With these intermediate states and the reward function Rpjcycle from [section 4.2.1} it is
possible to evaluate the action value function V defined in fequation (3.37) and therefore
apply PSO-P to the bicycle system. Using the MAP-estimates for intermediate states,
the action value function can be calculated as

~ MAP T
VS(] (a()/ M4 uT—l) = IE‘ Z ,),t Rbicycle(st) f/ S(), uO/ M4 aT—l
t=1
T
= Z ’Yt IE [Rbicycle(st) | f/ SU/ aO/ L4 aT—l] (4'13)
t=1

T
= 2 ,)/t Rbicycle (Si\/IAP)'
t=1

where s)!AP := sy. Since all states are deterministic, all expected values collapse to

applications of the reward function to the single deterministic state.

4.2.3 Evaluation Setup

Algorithm 4.4/ describes the setup used to evaluate and compare the different imple-
mentations of the action value function used in this thesis. PSO-P directly optimizes

the action value function in order choose actions to be applied to the bicycle system.
Since the action value function is based on the dynamics models, this policy highly
depends on the performance of the transition models. In order to reduce this bias in

60

4.2 Predictions without Uncertainties

Table 4.1: The parameters used for evaluation in this thesis.

Part Parameter Description Values
Simulation T Time Discretization 0.018
Successive Steps 10
Evaluation I Number of data sets 46
Number of trajectories 15
Maximum trajectory length 120
PSO-P T Time horizon 15
Oﬁngle Reward width (7/2)?
GP models N Number of training points {60000, 70000}
M Number of pseudo inputs {20, 30, 40, 50, 75, 100, 150}
K Kernel RBF

the evaluations, the performance is measured based on multiple different transition
models.

The behaviour of the transition models depends on the quality of the underlying
data set, the number of input points used for training and the prior choices of the
hyperparameters. The evaluation samples multiple data sets and then considers a
number of combinations of training points N and pseudo inputs M as shown in
The number of pseudo inputs determines the expressiveness of the model.
Many pseudo inputs allow the transition models to describe the data with more detail
while few pseudo inputs may force the model to generalize more.

Standard choices for the number of pseudo inputs are in the range from a few ten
to several hundred inputs [Sneo7], but the correct choice depends on the function to
be learned and cannot easily be determined. The models in this thesis range from
very simple models with 20 pseudo inputs to more powerful models with 150 pseudo
inputs. The boundaries were chosen based on empirical studies. At some point below
20 pseudo inputs, the models collapse since they loose their expressive power. For
a very high number of pseudo inputs, all techniques discussed in this thesis behave
very similarly, since the predictions of the models become almost perfect. Similarly,
the number of training points was chosen such that there is enough data to catch all
relevant parts of the dynamics but not enough data for the models to be perfect.

These different choices of hyperparameters for the transition models are applied to a
number of different data sets sampled according to [algorithm 4.3} For every such data

61

Chapter 4 Incorporating Uncertainty in Model-Based Reinforcement Learning

Algorithm 4.4 Bicycle evaluation setup

Let V denote an implementation of the action value function to be evaluated and s™*
the vector of maximum values for all state variables. All other constants are described
intable 4.1/and jalgorithm 4.3}

1: fori+ 1,1 do

2 D; < SAMPLEMIXEDBICYCLEDATASET(max N)

3 for all (N,M) € N x M do

4 Train transition model f (N.M) on D; with kernel K
5: fors < 1,5 do
6
7
8:

s$) < SAMPLEBICYCLESTARTSTATE() + AV(0, diag (104 - s™X))
Observe trajectory T; s from s((,s) using PSO-P on f(NM) and V

Evaluate V using the trajectories {7;|i € [I],s € [S]}

set, transition models are trained using the different combinations of the numbers of
training points and pseudo inputs. Based on every such model, multiple trajectories are
generated using PSO-P and the action value function V to be evaluated. A trajectory is
created by sampling a starting state sp and using PSO-P to choose an action ag to be
applied. Using this pair, the successive state s1 = fpicycle (So, #0) can be calculated using
the simulation. This process is iterated until the bicycle reaches the goal, falls over or
the trajectory becomes longer than the maximum trajectory length. The time horizon
T used in PSO-P is chosen to be long enough to contain about a third of a rotation of
the bicycle on a tight curve. This proofed to be a long enough horizon to solve the
benchmark while still remaining computationally feasible.

The application of leads to a large set of trajectories based on different
data and different models. In order to compare different implementations of the action

value function V, PSO-P is applied to the same starting states using the same models
with the respective functions.

4.2.4 Results using MAP Predictions

shows an example of a successful trajectory generated using PSO-P on the

maximum-a-posteriori action value function VMAY derived in equation (4.13)1 Since
the PSO policy does not have to be trained, the first interaction with the system can be
successful, based on the quality of the transition models. PSO-P tends to aggressively
exploit model bias to choose good actions in the time horizon. Since it does not have
any kind of memory, it does not follow a long-term strategy.

62

4.2 Predictions without Uncertainties

o
—_
o

T
|

Bl

6 [rad]
6 [rad/s]

7T
2| B -5 |
x| | I |
6 | | | | —10 — I I I 1
0 20 40 60 0 20 40 60
Time step Time step
T T ‘ T T ‘ T
15| g 40 iy
il {2 f
=) = 1
.g. O - — Fg‘ O - \/\/\/_/ -
3 — | |
3
&l 1% 2} :
-% L | | L —41 | | | L
0 20 40 60 0 20 40 60
Time ste Time ste
I T I)\ 20 T T T I)I T
7'[' |]
§ B 15+ |
Hon i | & | |
5 2 -
< 10 - :
0f \ \ \ L 5L I I —
0 20 40 60 0 20 40 60
Time step Time step

Figure 4.6: A single successful MAP trajectory. The bicycle starts at about 18 meters distance
from the goal with an angle of about go degrees. PSO-P starts by increasing both the distance
and angle towards the goal in the first five time steps. This allows the agent to make a more
aggressive turn until time step 30, after which the bicycle is heading towards the goal in a
mostly straight line.

63

Chapter 4 Incorporating Uncertainty in Model-Based Reinforcement Learning

100 T T T T T T T
= 80 [—
s
w L il
ks
% 60 [£ % § }7
g B 1 |
Q
A i
n 40 - |
| i
20 | | | | I | I |

| ! L
20 40 60 80 100 120 140
Pseudo Inputs

Figure 4.7: The success rate for different numbers of pseudo inputs with the standard error
of the mean. The performance of MAP-predictions increases slightly with the number of
pseudo inputs but always remains below 60 percent.

The bicycle reward function hints towards the goal by increasing the reward if the
bicycle’s frame points towards the goal. A typical trajectory created with the PSO policy
therefore first describes a curve with a radius as small as possible in order to quickly
point in the correct direction. If the bicycle points into the correct direction, PSO-P
drives straight towards the goal until it is reached. The policy avoids falling over on the
model since falling over reduces the achieved reward. It will however choose actions
which are as close to falling over as possible, since the minimum radius of a curve is
constrained by the maximum leaning angle w.

shows that this strategy often is not successful. Minimal errors in the
predictions of the models when the cyclist is leaning close to the maximum amount
lead to the cyclist falling over. Therefore, most trajectories fail while driving a curve. If
a trajectory starts at a state which does not require a tight curve, PSO-P can often reach
the goal, since it can very effectively solve the balancing problem in non-extreme states
and drive straight.

While and [4.8| are based on a single transition model and give an idea about
the performance of PSO-P using MAP-predictions, statistically significant results can be
obtained using the multiple iterations of the evaluation algorithm with different data
sets and transition models. shows the percentage of trajectories which reach
the goal plotted against the number of pseudo inputs. The more expressive the model,

64

4.2 Predictions without Uncertainties

25 F |

20 -

15 8

10 |- 2

y position [m]
e}
[
|

—10| 7 DW .

—151| .

—-20

=25 \ . \ \ \ \ \]

| L L | L |
-25 -20 -15 —-10 -5 0 5 10 15 20 25

x position [m]

Figure 4.8: The x and y coordinates of the front tyre in representative episodes when using
MAP-predictions with marks at the starting states. Successful episodes are colored in green
and failed episodes are colored in red. PSO-P tends to be successful for starting states which
do not require a curve to reach the goal. For other episodes, the policy usually fails during
curved driving. If successful, trajectories usually consist of one curve to orient the bicycle
followed by a straight line towards the goal.

65

Chapter 4 Incorporating Uncertainty in Model-Based Reinforcement Learning

the more successful PSO-P with MAP-predictions becomes, but overall, about half of
the trajectories trajectories end in failure.

In order to reduce the aggressiveness with which PSO-P exploits the model, the
uncertainty measure provided by the Gaussian processes are going to be integrated
into the action value function. If the model predicts that with a large probability, the
true system dynamics lead to failure, even if the MAP-prediction might still be a valid
state, PSO-P should choose a less extreme action. The following section introduces how
the reward function can be extended to beliefs about states and uses the uncertainty
predicted by the transition model during planning without propagating it through
multiple time steps.

4.3 Predictions with One-Step Uncertainties

PSO-P on the basis of MAP-predictions discards all information about model uncertain-
ties by assuming that the mean of the predictive distribution produced by the transition
model is the correct successive state. Long-term predictions for states multiple time
steps into the future can be obtained by iterative application of the transition model
since all intermediate states are deterministic. In the same way, the expected reward
for every time step can easily be calculated for arbitrary reward functions since no
integration using the state’s density function is needed.

The first approach to incorporating uncertainties into planning with PSO-P presented
in this thesis is a direct extension of the MAP approach. Instead of discarding them at
every time step, the uncertainties returned by the transition model are used to evaluate
the expected reward. These uncertainties are still not propagated however, as the
algorithm for deriving intermediate states in long-term predictions essentially remains
the same compared to the previous technique.

If states are not considered to be deterministic, it is no longer clear when an episode
should be considered to be over. For every time step, the predictive state distribu-
tions p(s1) to p(st) can have their probability mass spread over both terminal and
non-terminal states. After defining how to calculate the intermediate state distribu-
tions using one-step uncertainties, this section considers how the probability that the
predictive trajectory has already ended can be calculated with respect to the whole
trajectory.

66

4.3 Predictions with One-Step Uncertainties

4.3.1 Long-Term predictions

Similar to the MAP-predictions defined in long-term predictions with
one-step uncertainties are based on iterating the transition model using the means of
the predicted Gaussian distributions. The intermediate states are no longer assumed to
be deterministic however. They are random variables with the distribution returned
by the transition model. The function mapping a pair of a state distribution s; and an
action a; to the successive state distribution s;41 is given by

o5 {P(S*)XA—H?(S*) 10

s (st,ar) > f(E[si], ar),

Note that there can still be probability mass assigned to impossible states since the
Gaussian is symmetric around the mean. Since only the mean is used for predictions,
this does not cause a problem in this setting however.

The intermediate states s9° to s$5 can again be calculated using dynamic programming.
Terminal states are no longer modelled using fixed points in the transition function.
Since the intermediate states are probabilistic, it is no longer clear when the predicted
trajectory has ended. Instead, for every state, the probability of having reached the goal
can be calculated as

P (59 € Taoa) = p(reem <5),
p<stoS € ﬁallen) = p(‘wsg)s’ > %

(4.15)
i5)

respectively. Since the intermediate state distributions are Gaussian, the marginal
distributions for every variable in the state are (not necessarily independent) univariate
Gaussian distributions. Given a state distribution s ~ N (ps, Ls), the distribution of the
i-th state variable is given by

si~ N (1,200, (4.16)
Probabilities of the form p(s; < k) are then given by
(i)

k—
p(si<k) = P(l‘s‘) , (4.17)
Zsl'l

where ® denotes the cumulative distribution function of the standard normal distribu-
tion.

67

Chapter 4 Incorporating Uncertainty in Model-Based Reinforcement Learning

The probability p(s¥® € Tien) denotes the transition model’s belief that given that
the bicycle has not fallen down in the past, it will fall down exactly at time step t.
Now consider the state s?f_l one time step later. Again, the probability p(s?fl € Ttallen)
denotes the belief that the bicycle will fall down at exactly time step t 4 1. The state for
time step t + 1 was calculated under the assumption that the trajectory has not already
ended, since the transition model does not know about terminal states. However, the
correct trajectory could have also ended at time step ¢. In this case, the trajectory should
be considered to have been stuck at that terminal state. The probability p(sto_f1 € Ttallen)
then looses its significance in this case, since it has been calculated under wrong
assumptions.

In order to correctly calculate the probability that the trajectory has already ended
before or at time step t + 1, the probabilities of falling down or reaching the goal at any
of the previous time steps have to be considered. Let

p(G) =p (i < t:8; € Tgour),

‘ (4.18)
p(Ft) :==p(3i < t:8; € Tallen)

denote the probabilities that at any point before or at ¢, the trajectory has already ended
because of reaching the goal or falling down respectively. In other words, they denote
the accumulated belief of the transition model that the trajectory has at some point hit
a terminal state. These probabilities can be calculated using dynamic programming.
They are given by

p(Gi1) = p(Gr) + (1 = p(Gr)) - p(st+1 € Tgoat), (419)
p(Fiv1) = p(Ft) + (1 = p(Ft)) - p(st+1 € Tralten), '

respectively, where the probabilities p(Gy) and p(Fp) can be calculated directly.

With these probabilities describing the overall belief that the predictive trajectory has not
already ended, the expected reward for every state in the trajectory can be calculated.
Consider the state s; with the Gaussian distribution N (p¢, Z¢). Its expected reward is
given by

IE[lzbicyde(st)] = /Rbicycle(st) P(St) dst

(4.20)
= /Rbicycle(st) N(St | Kt Zt) ds.

In Rypicycle Was specified using a definition by cases, separating the terminal

states. To simplify the integration, it can be rewritten as a single sum using the indicator

68

4.3 Predictions with One-Step Uncertainties

function I in

2 ’ l[(s € anl)
Rbicycle(s) ={+0 ‘]I(S g 7:50311/5 € ﬁallen) (4.21)
+ 27T0a2ngleN(A¢ | 0, Ofngle) ’]I(S g Irgoalls Q 7Eallen)-

In the integration required for the expected reward, the indicator functions are replaced
by their corresponding probabilities according to the law of total probability. The
integral is then given by

| Reicyae(se) plsi) dst = 2-p(G) +0- (1= p(G) p(F)
+(1-p(G) (1~ p(F)
: /ﬁbicyde(st) p(st) ds; (4-22)
=2-p(Gr) + (1= p(G) (1~ p(F))
- [Reicyae(se) plsi) dst

where Rbicyde denotes the reward term for states which are not terminal and is defined
as

P, — 2
Rbicycle (S) = 270 angle

N (By(s) [0, (423)

angle

The angle A, between the bicycle’s heading and the goal can be calculated as the
difference of two entries of the state vector. Equivalently, it is the result of applying
a linear transformation to the Gaussian state distribution. Since Ay = ¢ — ¢ and the
variables in the state vector are organized as presented in this linear
transformation has the form

7 = (0,0,0,0,—1,0,1),

Ay — Ts: (4-24)

Linear transformations of Gaussians are also Gaussian [P+08]]. The distribution of Ay
is given by

Ay ~ N (7T g, T EgT). (4.25)

69

Chapter 4 Incorporating Uncertainty in Model-Based Reinforcement Learning

The expected reward for non-terminal states can then be rewritten as the integral of a
product of univariate Gaussian distributions. With ¢ := , /2702, gle it is given by

/Rbicycle(st>p<st) ds; = /CN<A1P(St ’O ngle>p<st) ds;

= /N Al/’ st) ’0 ngle)p(sf) dst

=c / N(By 10,02 40) P(Ay) dAy, (4.26)
= C/N Al[i | 0 ngle) (A¢ ‘ 7TT‘ut, NTZtT[) dA¢
=cN(n"pue | 0,0 ngle + 7T Eg7T).

The product of two Gaussian density functions is another unnormalized Gaussian
density function. The normalization constant can in turn be written in terms of
Gaussian densities and is the result of the integration [P+08].

Together these results give a closed form solution for the expected reward for the state
st which is given by

B[Ry (1)] =2 p(G) + (1 P(G))(1 ~ p(F)) [Reseelse) pls) sy
=2-p(G) + (1 —p(G)(1 - () (4-27)
/270 e N (7 e |0, gl + 70 Z470).

Note that for states with very low uncertainty, that is states for which 71" Z;7t goes to
zero, the expected value converges towards the original reward function. Similarly,
both p(G;) and p(F;) are close zero or one for all time steps, converging to the binary
behaviour of deterministic states. Using the one-step uncertainties, the action value
function can therefore be calculated as

A

Vs (ag,...,ar—1) 2’)’ Rblcycle(st)

t=1

f,So, ﬂ0,~--,€lT—1]

Il
Mﬂ

’Yt E [Rbicycle(st) ‘ f,s0,a0,--., aT—l]
! (4.28)

¥ (z-p< %) 1 (1 p(G%%)(1 — p(FO))

1/27wangle./\/'(7tT,ut 10,0 ngle + 7 ZOSn)>.

N
Il

Il
1=

H.
Il
=

70

4.3 Predictions with One-Step Uncertainties

100 T T T T T T T
= 80 [—
S,
o L i
K
% 60 [% % § }7
g B 1 |
Q
A i
wn 40 - |
| \MAP | |
(OF
20 | | | | ! | I

! | L |
20 40 60 80 100 120 140
Pseudo Inputs

Figure 4.9: The success rate for different numbers of pseudo inputs with the standard error of
the mean. Considering one step uncertainties increases the success rate by about 10 percent
for all numbers of pseudo inputs.

4.3.2 Results using One-Step Uncertainties

shows a number of trajectories generated with PSO-P applied to the

one-step action value function V%, The trajectories generated look very similar to
the MAP-trajectories shown in Both figures were created using the same
transition model and starting states. Comparing the two figures, more trajectories were
successful using the approach with one-step uncertainties. shows that this is
a statistically significant result.

For all numbers of pseudo inputs, and therefore for all different levels of model
expressiveness, considering one-step uncertainties in planning is beneficial. PSO-P
aggressively exploits model bias and creates trajectories where the bicycle is nearly
falling over. Since the predictive distribution is Gaussian and therefore symmetric,
half of the plausible successive states are more extreme than the predictive mean. The
expected reward reflects that these more extreme realizations might cause the bicycle to
fall down and therefore the trajectory to end. This incentivizes PSO-P to choose actions
where most possible posterior states for every time step are not failure states.

The newly introduced uncertainties do not prompt PSO-P to establish a noticeable
safety margin towards the maximum value of w however. shows why this

71

Chapter 4 Incorporating Uncertainty in Model-Based Reinforcement Learning

1072
7T] T
15 S 441 =
30 | . ws -]
k)) k)
.g. 0 [// 1 .g _4'6 [B
3 Ws| Ao 13
30 | - \ 7 7
30
LW 48 |
| |
15 | | | | Il
0 5 10 15 5
Time step Time step

Figure 4.10: A visualization of the one step uncertainties. Long term predictions using one
step uncertainties do not accumulate uncertainties. Instead, they are given by the predictive
variance of the transition model for one specific step. Since the transition models are very
accurate for single steps, these uncertainties can only be seen in a plot when zoomed in
considerably. The safety margin induced by these uncertainties therefore is also very small.

is the case: Since the transition model is very confident about predicting one single step
into the future, the predictive uncertainties (and therefore the safety margin) are very
small. This is to be expected however, since a model which is supposed to be able to
predict multiple steps into the future must show very good performance for a single
step in order to not quickly deviate from the correct trajectory.

Small errors in the single predictions accumulate and after some time steps close to the
correct trajectory, predicted trajectories tend to diverge from the truth rapidly. While
for every time step the transition model only makes small mistakes compared to the
correct transition function, iterating it means that later invocations create predictions
based on wrong assumptions about the prior state. The intermediate prior states have
up to now been assumed to be deterministic. The next section introduces how this
accumulation of errors can be modelled by propagating the uncertainty about the
current state through the Gaussian process model to produce a more correct posterior
distribution.

72

4.3 Predictions with One-Step Uncertainties

20

T

15

10 -

y position [m]
(@]
T

—10

—15 |

—20

T
|

—25 L I I I I I I I I I I

=25 -20 -15 —-10 -5 0 5 10 15 20 25

x position [m]

Figure 4.11: The x and y coordinates of the front tyre in representative episodes when using one
step uncertainties with marks at the starting states. Successful episodes are colored in green
and failed episodes are colored in red. When compared to MAP trajectories in
PSO-P generates very similar results. However, considering one step uncertainties has a
higher success rate when curved driving is needed.

73

Chapter 4 Incorporating Uncertainty in Model-Based Reinforcement Learning

4.4 Predictions with Multi-Step Uncertainties

Considering the one-step uncertainties produced by the transition model for planning
using PSO-P shows improved results when compared to only using MAP-predictions.
however shows that these uncertainties are very small since the transition
models used for the bicycle benchmark are very confident about their predictions.
Over the course of multiple time steps, small errors nevertheless accumulate and cause
large errors in the predicted trajectories which are not reflected well in the one-step
uncertainties.

In order to arrive at more reliable estimates of the true uncertainty about predictions
several steps into the future, the uncertainty about the state s; has to be taken into
account when predicting the distribution of the state s¢41. Since the transition dynamics
fpicycle are nonlinear, calculating the propagation of the prior uncertainty through the
Gaussian process directly is not analytically tractable and the resulting distribution
usually is not a Gaussian. This section introduces an approximation of this propagation
via linearization of the transition model around the predictive mean as presented in
[KFog] and [DFR15|]. This approximation can be used to create long-term predictions
with accumulated uncertainties.

4.4.1 Propagation of Uncertainties using Linearization

A transition model f described infsection 4.1.2]consists of a group of Gaussian processes
f4, one for every dimension d in a bicycle state. Instead of predicting the successive
state s;41 directly given a pair of deterministic state s; and action a;, the GPs are used
to predict Ay = st4+1 — s¢, the difference between the two states. The model f; is used
to predict the d-th entry of this vector.

Using MAP-predictions, A; is assumed to be one deterministic value and using the
one-step uncertainties, the complete Gaussian distribution A; ~ N (pa, Za) is the basis
of the distribution of the successive state. Since s; is assumed deterministic in these
cases, the distribution of s?_ﬁl is given by

OS
Str1 = St + Ai’/

(4-29)
5?4?1 ~ N (st + pa, Za)-

In both cases, the state was again assumed to be deterministic for the timestep t + 1 and
located at E[s¢41] in order to derive the distribution of the next state s, preventing
the accumulation of uncertainties.

74

4.4 Predictions with Multi-Step Uncertainties

—4 24t 0 2 4
St

Figure 4.12: This figure shows the propagation of uncertainties through a Gaussian process
transition model (upper right panel). The belief about the prior state s; is assumed to be
Gaussian (lower right panel). The orange shaded distribution of state changes A; (upper
left panel) is not Gaussian in general and cannot be calculated analytically. A Gaussian
approximation can be obtained by linearizing the transition model around the prior mean p;.

Algorithm 4.5 Computing the successive state distribution

Let s; ~ N (pt, L) denote a Gaussian state distribution and a; € A a deterministic
action.

1: Compute the augmented state distribution p(8;)

2: Approximate the predictive GP distribution p(A¢) = f (8¢, a¢)

3: Approximate the successive state distribution p(s¢y1) as the sum of s; and A;

75

Chapter 4 Incorporating Uncertainty in Model-Based Reinforcement Learning

Now assume the state s; ~ N (pt, X¢) is already uncertain. In order to propagate this
uncertainty through the transition model, the distribution p(A;) is computed by solving
the integral

p(a) = [[p(f(st,ar) |se) plsr) df dst, (430)

that is, by marginalizing both the belief over the current state s; and all plausible tran-
sition models f. illustrates that computing the exact predictive distribution
is analytically intractable, since the GP models are highly nonlinear.

Instead, the distribution is approximated by a Gaussian. Assume that the distribution
At ~ N (pa, Za) is known. Since s¢41 is the sum of s; and A¢, a Gaussian approximation
of the posterior distribution is given by

st+1 ~ N (pe+1, Ze41), where

Hti1 = Mt + U (4.31)
Y41 = Lt + Za + cov|ss, A¢] + cov[Ay, s¢],

where cov|st, A¢] denotes the covariance between the prior state and the state change.

Algorithm 4.5/ shows the different steps necessary to compute this predictive distribu-
tion.

The first step is to compute the augmented state distribution p(8¢) ~ N (fir, £¢). Instead
of using the state s; directly, the Gaussian process models are presented with the
augmented state §; when used for predictions. This distinction is made since in general,
the Gaussian processes may have been trained on data which has been preprocessed,
for example using dimensionality reduction techniques. In this thesis, augmenting a
state means replacing the angles ¢ and ¢ by their sine and cosine values as shown in
Equivalently, the angles have to be replaced in the joint distribution of
the state. Let @ ~ A (y, o) denote an angle with a Gaussian distribution. Using Euler’s
identity, it can be shown that the expected values of its sine and cosine are given by
o2
E[sina] = exp <—2> siny,
) (4.32)
E[cosa] = exp (—Z) cos i,

respectively [Dei1o]. The variances of the two random variables can be calculated as

var[sina| = 5 %exp(—ZaZ) cos(2u) — exp(—0c?) sin” 1,

11 (4-33)
var[cosa] = 55 exp(—20?) cos(2u) — exp(—0?) cos® j.

4.4 Predictions with Multi-Step Uncertainties

The mean fi; and covariance matrix £, of the augmented are calculated by inserting
these values into the original mean y; and covariance matrix X instead of the respective
angles. Since the sine and cosine functions are nonlinear, the covariances of the
transformed angles with all other variables are assumed to be zero.

The second step in the algorithm is to calculate p(A¢) from the augmented state
distribution. Since it cannot be calculated directly, the distribution is approximated
with a Gaussian. This approximation is obtained by linearizing the predictive mean
function of the transition model around the mean of the prior distribution. The mean
function y of the transition model f is therefore approximated by its first-order Taylor
expansion " around i which is given by

A iny/a A a]/l (ﬁ’at) A N
1p (3 ar) = f0 (80, a0) = ps(f, ar) + g*ﬁ(st — fir). (4-34)

Using this representation, A; is given as the affine transformation of §; defined by f!i",
which is a Gaussian N (pa, Za). This transformation is illustrated in
The predictive mean p, is obtained by evaluating the linearization at the prior mean
and is given by

pa = f (e ar) = pg (e, ae) = E[f (e, a)]. (4-35)

The d-th component of this vector is calculated using the predictive mean of the
Gaussian process f; in the transition model. Using it can be computed as

pa = 1 (pe ar) = Elfa(pe, ar)) = Ka(pe, X)Ba, (4-36)
where K; denotes the kernel function of f;, B; is a precomputed vector and X is the
augmented set of training points (or pseudo-inputs).

Using the different Gaussian process models, the derivative of the predictive mean
function at fi can be calculated explicitly. It is a matrix

J .
Vﬁﬁwmm) (4-37)

whose d-th line is determined by f;. It is given by

d

K (‘ f()
_ dia _ d\Ht,
Vi= aﬁtﬂf(.”trat) = T A~

ofit

B (4-38)

and depends on the derivative of the kernel function with respect to the augmented
mean. The Gaussian processes used in this thesis only make the prior assumption that

77

Chapter 4 Incorporating Uncertainty in Model-Based Reinforcement Learning

the transition dynamics of the bicycle benchmark are a smooth function and are trained
using a squared exponential kernel. For the squared exponential kernel as shown in

definition 10} this derivation can be calculated as

s s,) = gLt exp(—5(u—x)"A (e x))

— Kl 3) 5 (~ 0= 2N =)) (439)

= — Kse(p, x) A~ (p — x).

The predictive variance X consists of two components, the propagated uncertainty
about the prior state and the newly added model uncertainties for this transition.
Since the transition model is linearized, the propagation of the prior uncertainties is
equivalent to a linear transformation of the prior state distribution using the predictive
mean’s derivative V. Since the transition model is only evaluated for the prior mean fi;
and not for all other possible states, the true model uncertainty is unknown. Instead, it
is assumed to be constant and equal to the uncertainty for the prior mean. The two
components are independent given the prior distribution and therefore, the predictive
variance is given by

La = var[V§;] + var[f (fit, at)]

= VE VT 4+ diag (var[fi(fie, at)], . .., var[fp(fis, at)]), (4.40)

since §; is Gaussian [P+08]. The covariance of the augmented state and the state change
is given by

A

cov[st, As] = cov[ss, Vsi] = cov|ss, s:]VT = £, VT, (4-41)
using the linearity of expectations. Equivalently, it holds that cov[Ay, s;] = VE;.

Using the linearization of the predictive mean function, all components necessary to
approximate the posterior distribution p(s¢+1) can be calculated. The belief about the
successive state is a Gaussian distribution characterized by

St41 ~ N (pe+1, Ze41), where
Her1 = Pt + pa

= pe + E[f (fir, ar)] (4-42)
Lit1 = L¢ + Xa + cov|sy, A¢] + cov[Ay, st

=X, +VE VT + var(f (fiy, ar)] + VT 4+ VE,

4.4 Predictions with Multi-Step Uncertainties

6 [rad]
SERENE

SR o

\
SE
I

Time step

Figure 4.13: Colored long-term predictions for one time horizon using multi step uncertainties
and starting from a deterministic state compared to the dashed simulation. Considering
multi-step uncertainties yields the shaded measure of confidence, which in this case correctly
identifies that the predictive error increases after about half the time horizon.

4.4.2 Long-Term predictions

Using the linearization presented in to propagate state distributions
through the transition model, it is possible to create long-term predictions with accu-

mulated uncertainties. While the starting state s is always deterministic since it is an
observation of the real system, the intermediate states s; to st are random variables.
In the case of the bicycle benchmark, the transition dynamics fyicycle are completely
deterministic, so all uncertainties in the predictions stem from the transition model’s
confidence about its predictions.

Using linearization, the intermediate states’ distributions p(s1) to p(sr) are multivariate
Gaussians. Given a pair of a state distribution s; and an action a;, the distribution of
the successive state is given by

P(ST)xA—=P(ST
Ms'{()X A= PST) (4-43)

S
1 (St/ at) — f(St, at),

With multi-step uncertainties it is no longer necessary to fall back to deterministic
intermediate states for prediction.

shows an example for long-term predictions using multi-step uncertainties.
As with the other approaches presented in this thesis, all intermediate states s}!5 to sy
can be calculated using dynamic programming. In contrast to the one-step uncertainties
presented in the state distributions obtained using linearization quite
accurately estimate the predictive error. The uncertainties reach the same order of

79

Chapter 4 Incorporating Uncertainty in Model-Based Reinforcement Learning

magnitude as the dynamic range of their variable and become visible in the plot after
a few time steps. After about seven time steps, the uncertainties about w grow and
two standard deviations cover most of the value range. At this point, the model’s
predictions can be interpreted as almost complete uncertainty about the correct state. At
the same time however, the predictive mean is no longer close to the correct trajectory.
The model correctly identifies the decline in accuracy of its predictions.

Large uncertainties about w lead to probability mass in the tail of the Gaussian being
placed outside of the valid range of values. For every such time step, the accumulated
probability p(FMS) of already having fallen down at some time before or at time step ¢
increases. This probability is calculated via dynamic programming using the rules
presented in While falling down does not cause a direct punishment
(since the associated reward is zero), a higher probability of an ended trajectory lowers
the amount of reward which can be earned for the later time steps in the prediction.

Given the intermediate state distributions sM> ~ A (uMS, £MS), the action value function

using multi-step uncertainties is calculated analogously to the one-step action value
function presented in [equation (4.28), since only the way of calculating the state
distributions has changed. Having calculated the terminal probabilities p(GM®) and
p(FMS) it is given by

T

E ! Rbicycle (st)

t=1

~MS
Vso (a(), ceey uT_l) =FE

f,So,ﬂo,u~,ﬂT—1]

) (2:p(@") + (1= p@N(-p(F=) 440

=1

MS MS
\ /27Wa2ng1e N(7"udS 0, U'Z"ngle + T Z} 7r)>

~~

4.4.3 Posterior States using the Truncation of Gaussians

Using the intermediate state distributions p(sM°) directly when predicting successive
states is a good approximation in most cases but is not correct when the terminal
probabilities p(s; € Traien) Or P(st € Tgoal) are large. For any state s; in the set of
terminal states 7, the successive state s;11 is always defined to be equal to s;, regardless
of the action performed by the agent. The transition model f is however trained using
only non-terminal state transitions, that is, state transitions where neither the prior nor
the posterior state is terminal. This implies the assumption that the transition model
only operates on non-terminal states, similar to transition dynamics f in general only

8o

4.4 Predictions with Multi-Step Uncertainties

T N
6
|
1
5 i
& 0F
e |
2
|
6

Time step

Figure 4.14: Colored long-term predictions for one time horizon using multi step uncertainties
with truncation and starting from a deterministic state compared to the dashed simulation.
While the amount of probability mass spread over terminal states is negligible, the predictions
using the truncation of Gaussians is almost equal to using only linearization as shown in
However, for the last time steps, truncating the terminal regions of w yields more
correct predictions.

being defined on S, the set of non terminal states. The attractor property of terminal
states has to be modelled outside of the transition models.

In the action value function, this is reflected by the accumulative probabilities p(G) and
p(F). Any probability mass which falls to their respective terminal states is assumed
to stay there for the remaining time steps, since their respective trajectories end at
that point. When predicting successive states using the function sltvjrsl, this information
is not considered however. The prior Gaussian distribution used for linearization
can have considerable probability mass attributed to terminal states. Consulting the
transition model however implies the condition that the trajectory has not yet ended.
This condition is encoded in the successive state function SLC_;I given by

5?4(511 P(ST)x A— P(ST) (4.45)
(st,ar) = f(st,ar|st €T).
Given a Gaussian state distribution s; ~ N (p, Z¢), the probability distribution
p(st|st €T) (4-46)

can in general not be calculated analytically and is approximated with another Gaussian
using moment matching. In the bicycle benchmark, the density function of this
distribution can be obtained by truncating the original Gaussian distribution using the
hyperplanes defined by fequation (4.15)|and renormalizing the result. Algorithms to

81

Chapter 4 Incorporating Uncertainty in Model-Based Reinforcement Learning

calculate the moments of the resulting distribution are described in [Heros] and [Touog].
. . ~TG
The action value function V~ is equivalent to the action value function without the

. . ~MS
truncation of Gaussians V.

shows predictions using multi-step uncertainties and the truncation of the
state distribution Gaussian after every time step. While the predictions with small
uncertainties are almost identical to the predictions in they differ once the
uncertainties are large enough to distribute mass over terminal states. After every time
step, the mean of the prediction for w tends more towards the middle of the value
range and thus towards the most uninformative prediction with a mean at zero and the
uncertainty spread over the complete range of possible values.

For every time step, the probability mass spread over terminal states represents steps
from a non-terminal state at time step t (ensured by the conditional probability in
the function sEl) to a terminal state at t + 1. The probabilities p(sLCr;1 € Tgoal) and
p(s?_(ﬁl € Trallen) therefore correctly represent the probability of reaching the goal or
falling exactly at time step t 4 1 respectively. In contrast, the probabilities p(sltv_lf1 € Tgoal)
and p(s%rsl € Ttallen) also contain instances where 511}45 already was in the respective sets.
The multi-step uncertainties without the truncation of Gaussians therefore overestimate

the terminal probabilities p(G;) and p(F;).

4.4.4 Results using Multi-Step Uncertainties

Figures 4.17]and [4.18| show trajectories generated by applying PSO-P to the one-ste
4] g Yy applying P

value functions VIS\;I and VIOG respectively. Both the models and starting states are
the same as the ones used in [figures 4.8/ and |4.11} the corresponding figures for the
maximum-a-posteriori and the one-step uncertainties approaches. While the trajectories
look very similar to each other, they are different to the trajectories generated without
informative uncertainties.

PSO-P is able to balance the bicycle longer for almost every starting state and is more
successful when using multi-step uncertainties without the truncation of Gaussians. If
PSO-P is successful using MAP-predictions or one-step uncertainties, the trajectories
consist of a single curve to orient the bicycle directly followed by driving straight
towards the goal. Using multi-step uncertainties, PSO-P avoids driving in a straight
line. Instead, the bicycle’s movement describes a wave, where the policy is always
leaning slightly into one direction. This effect is also visible in which shows
all state variables over time for one successful trajectory. The policy alternates between
steering heavily to the left or to the right which results in the wavy movement.

82

4.4 Predictions with Multi-Step Uncertainties

100 T T T T T T T
P!]
= 80 ¢ |
Y | : ¢
S o o, b
s 00[! 1
§o il J
3 ;
40 - + MAP
. MS
Ei *MS-TG | |
20 | | | | ! | I | I

! |
20 40 60 80 100 120 140
Pseudo Inputs

Figure 4.15: The success rate for different numbers of pseudo inputs with the standard error
of the mean. Using multi step uncertainties without truncation considerably improves the
performance for the less expressive models and always yields an increase of the success rate
of at least 10 percent when compared to MAP-predictions. The performance of multi step
uncertainties with truncation is comparable to MAP-predictions.

When using multi-step uncertainties, PSO-P must avoid action sequences which lead to
very uncertain predictions, since for high uncertainties, the probabilities for reaching
a terminal state grow. A possible explanation for the wavy movement is that driving
straight is hard to predict for the transition model for two reasons. Firstly, the training
data described in does not contain many samples of driving straight.
The training trajectories start with a bicycle in an upright position going straight,
but applying random actions cannot balance the bicycle. Since the bicycle quickly
begins to fall, most transitions observed in the trajectories do not show a balanced
bicycle. Similarly, randomly sampled transitions do not show an upright bicycle with
high probability. Because of this, the transition models are more confident about the
parts of the system where the bicycle is leaning slightly and therefore, the long-term
uncertainties are smaller in this case. And secondly, a balanced bicycle is unstable
and if left alone, the bicycle will start to fall down. If the bicycle is exactly upright, it
is hard for the models to predict if the bicycle will fall towards the left or the right,
which leads to a bimodal distribution. Since all approximations used in this thesis are
unimodal, this leads to a higher uncertainty compared to states where the bicycle is
leaning slightly, since in this case, the natural development of the system is easier to
predict.

83

Chapter 4 Incorporating Uncertainty in Model-Based Reinforcement Learning

T T T T T 10 7 T T T T
6 i h - -
Bt 15 f
£l I 1 < i 1
R 12 o :
R
(s} - B [i
7T >
12| B -5 |
| | I |
6 | | | | —10 — 1 1 1 T
0 20 40 60 0 20 40 60
Time step Time step
7T T T T T T T T T T T
5[g 40 iy
B {2 f
=) < 1
£ o : g 0 \/\/\/\/\/ :
3 _ : |
3
_% | a 2| B
-% L | | | —41 | | | | i
0 20 40 60 0 20 40 60
Time ste Time ste
I T T Ip T 20 T T T \p
7'[l—]
§ B 15 .
Hon i | & | i
5 2 -
< 10 - :
0f | | | | N 5L i i i |
0 20 40 60 0 20 40 60
Time step Time step

Figure 4.16: A single successful trajectory using multi step uncertainties. Equivalently to the
successful MAP trajectory in [figure 4.6} the bicycle starts at about 18 meters distance from the
goal with an angle of about 9o degrees. Similar to the first trajectory, PSO-P is first concerned
with reducing the angle towards the goal in the first thirty time steps and then keeps driving
towards the goal. Using multi step uncertainties, instead of driving straight, the bicycle’s
trajectory describes a wave, with the controller always keeping the bicycle leaning towards
one side.

84

4.4 Predictions with Multi-Step Uncertainties

25| a

T

20

T

15

10|

y position [m]
(@]
|

—10

—15 |

—-20

T

—25 L . \ \ \ \ \ \ \ \ \]

-25 =20 —-15 —-10 -5 0 5 10 15 20 25

x position [m]

Figure 4.17: The x and y coordinates of the front tyre in representative episodes when using
multi step uncertainties without truncation with marks at the starting states. Successful
episodes are colored in green and failed episodes are colored in red. Incorporating multi
step uncertainties can increase the success rate considerably. However, instead of driving in
relatively straight lines as in [figures 4.8 and |4.11} the PSO-Policy favours wavy trajectories
when considering multi step uncertainties.

85

Chapter 4 Incorporating Uncertainty in Model-Based Reinforcement Learning

20

T

15

10 |-

y position [m]
(@]
|

—10

—15 |

20| ' .

—25 L \ \ \ \ \ \ \ \ \]

=25 -20 -15 —-10 -5 0 5 10 15 20 25

x position [m]

Figure 4.18: The x and y coordinates of the front tyre in representative episodes when using

multi step uncertainties with truncation with marks at the starting states. Successful episodes
are colored in green and failed episodes are colored in red. Trajectories generated when using
the truncation of Gaussians look similar to the trajectories without truncation as showed in

also describing waves.

86

4.5 Discussion of the Approaches

Table 4.2: Comparison of the results of the evaluation.

Metric MAP oS MS MS-TG
Number of Trajectories 9660 9660 9660 9660
Success Rate 53.4 % 63.8 % 75.8 % 52.5%
Failure Rate 46.6 % 36.2% 24.2% 47.5 %
Mean Mean-Reward 0.87 1.01 1.17 0.91
Median Mean-Reward 0.85 1.00 1.24 0.96
Mean Time to Goal 59.9 62.0 66.5 68.1
Median Time to Goal 60 60 63 63

Not driving in straight lines means that PSO-P takes longer to reach the goal for
successful trajectories compared to the other approaches. However, the statistical
evaluation in shows that in most cases, using multi-step uncertainties allows
PSO-P to reach the goal significantly more often. The policy trades the higher reward
of a quicker solution against a safer route which is more defensive and which the
transition models can more easily predict. For models with a higher numer of pseudo-
inputs, using multi-step uncertainties with the truncation of Gaussians becomes less
successful than the other approaches however. A possible explanation for this is the fact
that the truncation of Gaussians has the tendency to create uninformed predictions for
later time steps, independent of the actions proposed by PSO-P. It therefore becomes
harder for the optimization process to identify good action sequences. While for weaker
models, this can be beneficial because is avoids the exploitation of model bias, it might
prevent the exploitation of model knowledge for better models.

4.5 Discussion of the Approaches

In the results of the evaluation of the four approaches presented in this thesis
are compared. These approaches are using maximum-a-posteriori predictions only
(MAP) as described in using one-step uncertainties (OS) as described
in and using multi-step uncertainties, both without (MS) and with the
truncation of Gaussians (MS-TG), both of which are detailed in All evalua-
tions were performed according to [algorithm 4.4/ and table 4.1 To create the respective
9660 trajectories, the same data sets, models and starting states were used for all
techniques.

87

Chapter 4 Incorporating Uncertainty in Model-Based Reinforcement Learning

100 T T T T T T T
g i |
— 80| ¢ |
>,
o - ¢ ; | ? |
(o] % T
~ L N
< B 1]
g r » MAP
D40 oS |
|- ° MS -
} +MS-TG
20 Il Il Il Il I Il I Il I

| !
20 40 60 80 100 120 140
Pseudo Inputs

Figure 4.19: The success rate for different numbers of pseudo inputs with the standard error
of the mean. Considering uncertainties during long-term planning can be beneficial. Multi
step uncertainties without truncation perform much better with less expressive models
when compared to one step uncertainties. For a larger number of pseudo inputs, the two
approaches both perform about 10 percent better than MAP-predictions.

Considering the model uncertainties provided by the Gaussian process transition
models during planning with PSO-P can improve the generated trajectories. Both the
knowledge about one-step uncertainties and multi-step uncertainties allows the policy
to account for errors in the transition model and prevent the exploitation of model bias
to some extent. In the bicycle benchmark, exploiting model bias mostly means planning
trajectories for which the model assumes that the resulting value of w will be equal to
its maximum value as precisely as possible. In this setting, even small mistakes of the
models cause the bicycle to fall down and the trajectory to fail.

shows that multi-step uncertainties improve the overall success rate of PSO-P in
the bicycle benchmark from about half the trajectories to about 75 percent. However, the
results when using the truncation of Gaussians are comparable with only using MAP-
predictions. In the success rates of models with different complexities are
compared. While both the one-step and multi-step approaches without the truncation
of Gaussians consistently perform better than the classic alternative, the last technique
only shows some improvement for less expressive models.

This trend continues when comparing the mean rewards earned throughout a trajectory.
Given a series of observed (and therefore deterministic) states beginning with the

88

4.5 Discussion of the Approaches

1.4 T T T T T T T
B |
512 ° |
: } {
& : : ¢
NN i 1
2 | E § i b
§ 08|t * MAP |
$. 0S
,§ ° MS |
0.67 ’MS'TG N
| | | | | I | |

| | |
20 40 60 80 100 120 140
Pseudo Inputs

Figure 4.20: The mean mean reward for different numbers of pseudo inputs with the standard
error of the prediction. The results of the mean mean reward metric are comparable to
the success rate. While multi step uncertainties with truncation performs about as good as
MAP-predictions, both one step and multi step uncertainties without truncation perform
considerably better. Considering uncertainties is more beneficial for less expressive models.

starting state s, the mean reward earned throughout a trajectory is defined as

_ 1 I
Rbicycle(sﬂr SR ST) = f Z Rbicycle(st)' (447)
t=1

Note that T is a constant defined in and can be larger than the length of
the trajectory. In this case, the terminal state at the end of the trajectory is repeated
infinitely as defined in jequation (3.5)| [Figure 4.20, shows the mean mean reward of all
trajectories created with the different classes of models. Given a set T of trajectories,
the mean mean reward is defined as

1 7|

ﬁbicycle (T) = m ﬁ‘bicycle (Ti) . (4-48)
i=1

Especially for less expressive models which are forced to generalize more, the techniques
which consider model uncertainties perform better. While both OS and MS earn
significantly more reward, MS-TG only slightly outperforms the baseline.

The increase in performance of MS comes with a price however. When comparing
the mean number of time steps required to reach the goal in successful trajectories, it

89

Chapter 4 Incorporating Uncertainty in Model-Based Reinforcement Learning

can be seen that MAP is able to reach the goal more quickly on average than either
OS or MS. Using MAP, PSO-P plans trajectories which are as short and aggressive as
possible, therefore minimizing the required time. With MS, the bicycle drives much
more defensive but takes more time to reach the goal, as can be seen in The
mean time to goal presented in are somewhat biased though, as PSO-P with
MAP tends to fail more often for longer or more complex trajectories which require
long curves. The median time to goal suggests that for similar situations, the time
difference between the two approaches could be smaller.

4.6 Summary

This chapter applied Gaussian processes and PSO-P as presented in to the
bicycle benchmark problem. It described the sampling of data sets and the design of
Gaussian process models for the transition function fy;cycle- Based on these models, it
presented the classical solution of using deterministic maximum-a-posterior predictions
to create long-term predictions. As a baseline for comparison, PSO-P was applied to
the action-value-function V using a reward function Rpjcycle formulated using reward
shaping.

A first improvement over plain MAP-predictions was given by using the one-step
uncertainties yielded by the transition models to approximate the expected reward
E[Rpicycle(st)] of the intermediate states s; more exactly. If the intermediate states are
no longer deterministic, it is no longer clear when a predictive trajectory ends. The
solution proposed in this thesis is to calculate accumulative probabilities p(G;) and
p(Ft) for the different termination conditions for every time step and to weight the
expected reward accordingly.

Since one-step uncertainties cannot correctly model the iterated confidence of the
transition model, the next approach was to propagate the state uncertainties through
the nonlinear transition models using linearization. These accumulated uncertainties
reduce model bias since they give an accurate measure of the correctness of long-term
trajectories and reduce model bias. Using PSO-P with multi-step uncertainties results
in more defensive trajectories which are more often successful.

90

Chapter 5
Conclusions

This thesis was concerned with incorporating information about uncertainties into rein-
forcement learning using ideas from Bayesian statistics. In model-based reinforcement
learning, a model of the system’s transition dynamics extracted from limited obser-
vations is used to make approximations about the system’s future behaviour. These
observations were considered to be gathered beforehand using a simple controller
or random exploration instead of allowing the controller to directly interact with the
system. This restriction is often imposed in industrial systems due to financial or safety
concerns. Instead of relying on a single deterministic model which introduces model
bias, a Bayesian framework considers distributions over models obtained by combining
broad and simple prior assumptions about the transition function with their likelihood
given the observed data. Since the observed data is finite, there are multiple plausible
models which have to be considered. Gaussian processes make predictions about
successive states by marginalizing the distribution of plausible models and can give
estimations about the uncertainty of their predictions in a principled manner. Instead
of learning a closed policy representation using these transition models, this thesis used
the PSO-Policy, which chooses actions by directly optimizing the expected long-term
reward.

The deterministic bicycle system by Randlev and Alstrom was used as a benchmark
problem to illustrate the challenges introduced by considering uncertain predictions.
While Gaussian processes directly provide a measure of uncertain predictions given
a certain input, there is no analytical solution to propagating already uncertain belief
about the current state through the transition model to obtain the belief about the
successive state. Besides considering classic deterministic predictions without any
uncertainty, this thesis considered using both one-step and multi-step uncertainties.
While for one-step uncertainties, long-term predictions are obtained by assuming the
state to be deterministic before every application of the transition model, multi-step
uncertainties approximate the posterior distribution with a Gaussian by linearizing

91

Chapter 5 Conclusions

the transition model around the mean of the belief about the prior state, thereby
propagating uncertainty through the nonlinear transition function.

In the bicycle benchmark, the controller has to balance a bicycle to keep it from falling
over and navigate towards a goal region. This introduces the possibility of failure and
the concept of terminal states. In contrast to deterministic long-term predictions, where
for every time step the predictive state is either terminal or not, uncertain predictions
can spread probability mass over both regions of the state space, which represents the
belief that the trajectory could both have ended or not. Since the transition models
only handle non-terminal states, this thesis proposed a technique which models and
propagates this belief separately in order to correctly calculate the expected long-
term reward. Additionally, this belief can be used to refine the state distributions by
truncating the Gaussian to non-terminal states.

This thesis provided experimental evidence that considering model uncertainties during
planning is beneficial when creating trajectories for the bicycle benchmark using PSO-P.
Instead of aggressively exploiting the model and therefore falling victim to model bias,
multi-step uncertainties incentivize the controller to choose actions where the transition
model is confident about its predictions and where small mistakes of the models do not
cause the trajectory to fail. This increased the success rate considerably when compared
to classical maximum-a-posteriori predictions.

Since this thesis made few assumptions specific to the bicycle problem, this result is
promising with respect to other control problems where no or limited expert knowledge
is available. Uncertainty information reflecting the confidence of the transition model
allow a controller to make more informed decisions during planning and to reduce risk
by avoiding unknown parts of the system. On the other hand, the uncertainty in the
transition model can also be used to drive exploration in settings where a controller
is allowed interaction with the system, thereby reducing the amount of interaction
needed.

There are multiple different directions of possible future work based on this thesis.
While the uncertainties about the transition model are used as a basis for long-term
predictions and provide a more reliable estimation of the expected long-term reward
when compared to deterministic predictions, these uncertainties are not directly utilized
during the optimization process of PSO-P. Instead, they only indirectly improve the
policy by making the objective function more robust. Bayesian optimization schemes
[BCF10|] could be used on the uncertain reward function to choose actions which result
in high expected reward with lower variance. Additionally, the computational cost of
choosing actions could be reduced considerably. While PSO has to evaluate the objective
function very often, Bayesian optimization schemes assume that this is expensive and

92

try to find an optimum with as few evaluations as possible. Alternatively, policies
in closed form could be learned by maximizing the expected reward of simulated
trajectories as proposed by Deisenroth in [Dei10].

The transition models operate under the assumption that the prior state is not ter-
minal. In order to handle terminal states with uncertain long-term predictions, the
probabilities of ever having reached a terminal state in the past are calculated via
dynamic programming. In order to avoid predictions under wrong assumptions, this
thesis proposed to truncate the state distributions to remove the probability mass in
terminal states. However, performing this truncation has a detrimental effect on the
performance of PSO-P in the bicycle benchmark. This could be specific to the bicycle
benchmark or point to an adverse interaction between PSO-P and the truncation given
high uncertainties.

In order to ensure analytical tractability, this thesis assumes Gaussian distributions of in-
termediate states and often approximates unknown distributions. Additionally, the true
transition function is assumed to be deterministic or at least unimodal when modelling
it using a Gaussian process. However, problems with higher modality are common in
reinforcement learning and cannot easily be modelled using the approaches presented
in this thesis. Recent work by Depeweg et al. presents an extension of long-term
predictions to higher modality by Monte-Carlo-sampling trajectories using Bayesian
neural networks [Dep+16|], which could also be applied to Gaussian processes.

93

Appendix A

Bibliography

[Ast71]

[BCF10]

[Cleg9]

[Dam15]

[Dei1o]

[Dep+16]

Karl J. Astrém. Introduction to Stochastic Control Theory. Elsevier, Feb. 27,
1971. 318 pp. ISBN: 978-0-08-095579-7.

Eric Brochu, Vlad M. Cora, and Nando de Freitas. “A Tutorial on Bayesian
Optimization of Expensive Cost Functions, with Application to Active User
Modeling and Hierarchical Reinforcement Learning”. In: arXiv:1012.2599 [cs]
(Dec. 12, 2010). arXiv:|[1012.2599. URL: http://arxiv.org/abs/1012.2599
(visited on 02/01/2016).

Maurice Clerc. “The swarm and the queen: towards a deterministic and
adaptive particle swarm optimization”. In: Evolutionary Computation, 1999.
CEC 99. Proceedings of the 1999 Congress on. Vol. 3. IEEE, 1999. URL: http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=785513 (visited on
06/13/2016).

Andreas Damianou. “Deep Gaussian processes and variational propagation
of uncertainty”. PhD thesis. University of Sheffield, 2015. URL: http: //
etheses.whiterose.ac.uk/id/eprint/9968 (visited on 02/01/2016).

Marc Peter Deisenroth. “Efficient Reinforcement Learning using Gaussian
Processes”. PhD thesis. KIT Scientific Publishing, 2010. URL: http://www,
cs.washington.edu/research/projects/aiweb/media/papers/tmppgidj5
(visited on 04/19/2016).

Stefan Depeweg et al. “Learning and Policy Search in Stochastic Dynamical
Systems with Bayesian Neural Networks”. In: arXiv:1605.07127 [cs, stat]
(May 23, 2016). arXiv: 1605.07127. URL: http://arxiv.org/abs/1605.
07127|(visited on 06/06/2016).

95

http://arxiv.org/abs/1012.2599
http://arxiv.org/abs/1012.2599
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=785513
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=785513
http://etheses.whiterose.ac.uk/id/eprint/9968
http://etheses.whiterose.ac.uk/id/eprint/9968
http://www.cs.washington.edu/research/projects/aiweb/media/papers/tmppqidj5
http://www.cs.washington.edu/research/projects/aiweb/media/papers/tmppqidj5
http://arxiv.org/abs/1605.07127
http://arxiv.org/abs/1605.07127
http://arxiv.org/abs/1605.07127

Appendix A Bibliography

[DFR15]

[DR11]

[DRF11]

[Engo6]

[ESoo]

[Gauog]

[GPy12]

[Hei+16]

[Heros]

Marc Peter Deisenroth, Dieter Fox, and Carl Edward Rasmussen. “Gaussian
processes for data-efficient learning in robotics and control”. In: Pattern
Analysis and Machine Intelligence, IEEE Transactions on 37.2 (2015), pp. 408—423.
URL: |http://ieeexplore.ieee.org/xpls/abs_all. jsp?arnumber=6654139
(visited on 02/01/2016).

Marc Deisenroth and Carl E. Rasmussen. “PILCO: A model-based and
data-efficient approach to policy search”. In: Proceedings of the 28th In-
ternational Conference on machine learning (ICML-11). 2011, pp. 465-472.
URL: http : //machinelearning . wustl . edu/ mlpapers / paper _files/
ICML2011Deisenroth_323.pdf (visited on 02/01/2016).

Marc Peter Deisenroth, Carl Edward Rasmussen, and Dieter Fox. “Learning
to Control a Low-Cost Manipulator using Data-Efficient Reinforcement
Learning”. In: (2011). URL: http://core.ac.uk/download/pdf/241164.pdf
(visited on 02/01/2016).

Andries P. Engelbrecht. Fundamentals of computational swarm intelligence. John
Wiley & Sons, 2006. URL: http://dl.acm.org/citation.cfm?id=1199518
(visited on 02/01/2016).

Russ C. Eberhart and Yuhui Shi. “Comparing inertia weights and constric-
tion factors in particle swarm optimization”. In: Evolutionary Computation,
2000. Proceedings of the 2000 Congress on. Vol. 1. IEEE, 2000, pp. 84-88. URL:
http://ieeexplore. ieee.org/xpls/abs_all. jsp?arnumber=870279
(visited on 05/13/2016).

Carl Friedrich Gauss. Theoria motus corporum coelestium in sectionibus conicis
solem ambientium. sumtibus Frid. Perthes et IH Besser, 1809. URL: https:
//books. google.de/books?id=VKhu8yPcat8C (visited on 06/06/2016).

GPy. GPy: A Gaussian process framework in python. Version 1.0.7. 2012. URL:
https://github.com/SheffieldML/GPy|(visited on 05/20/2016).

Daniel Hein et al. “Reinforcement Learning with Particle Swarm Optimiza-
tion Policy (PSO-P) in Continuous State and Actionspaces”. In: 7.3 (July
2016).

Ralf Herbrich. On Gaussian expectation propagation. Technical report, Mi-
crosoft Research Cambridge, research. microsoft. com/pubs/74554/EP.
pdf, 2005. URL: http://131.107.65.14/pubs/74554/EP . pdf (visited on
05/30/2016).

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6654139
http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Deisenroth_323.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Deisenroth_323.pdf
http://core.ac.uk/download/pdf/241164.pdf
http://dl.acm.org/citation.cfm?id=1199518
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=870279
https://books.google.de/books?id=VKhu8yPcat8C
https://books.google.de/books?id=VKhu8yPcat8C
https://github.com/SheffieldML/GPy
http://131.107.65.14/pubs/74554/EP.pdf

[Hsuo2]

[KFog]

[Kol+10]

[Kuto1]

[McK10]

[MR16]

[Muri12]

[P+08]

[Preoy]

[RA98]

[Raso6]

Feng-Hsiung Hsu. Behind Deep Blue: Building the computer that defeated the
world chess champion. Princeton University Press, 2002. URL: https://books,
google.de/books?id=zVOW4729UqgkC (visited on 06/07/2016).

Jonathan Ko and Dieter Fox. “GP-BayesFilters: Bayesian filtering using Gaus-
sian process prediction and observation models”. In: Autonomous Robots
27.1 (2009), pp. 75—90. URL: http://1link.springer.com/article/10.1007/
s10514-009-9119-x (visited on 05/27/2016).

J. Zico Kolter et al. “A Probabilistic Approach to Mixed Open-loop and
Closed-loop Control, with Application to Extreme Autonomous Driving”.
In: Robotics and Automation (ICRA), 2010 IEEE International Conference on.
IEEE, 2010, pp. 839-845. URL: http://ieeexplore.ieee.org/xpls/abs_
all.jsp?arnumber=5509562 (visited on 06/07/2016).

Wilhelm Kutta. “Beitrag zur ndherungweisen Integration totaler Differen-
tialgleichungen”. In: (1901). URL: http://www.citeulike.org/group/1448/
article/813805 (visited on 05/20/2016).

Wes McKinney. “Data Structures for Statistical Computing in Python”.
In: 2010, pp. 51—56. URL: https://conference. scipy.org/proceedings/
scipy2010/mckinney.html (visited on 05/20/2016).

Rowan McAllister and Carl Edward Rasmussen. “Data-Efficient Reinforce-
ment Learning in Continuous-State POMDPs”. In: arXiv:1602.02523 (2016).
URL: |http://arxiv.org/abs/1602.02523|(visited on 02/28/2016).

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press,
Aug. 24, 2012. 1098 pp. ISBN: 978-0-262-01802-9.

Kaare Brandt Petersen, Michael Syskind Pedersen, et al. “The matrix cook-
book”. In: Technical University of Denmark 7 (2008), p. 15. URL: http://www!
cim.mcgill . ca/~dudek/417/Papers/matrixOperations. pdf| (visited on
02/01/2016).

William H. Press. Numerical Recipes 3rd Edition: The Art of Scientific Computing.
Cambridge University Press, Sept. 6, 2007. 1195 pp. ISBN: 978-0-521-88068-8.

Jette Randlev and Preben Alstrom. “Learning to Drive a Bicycle Using
Reinforcement Learning and Shaping.” In: ICML. Vol. 98. Citeseer, 1998,
PP- 463—471. URL: http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.52.3038 (visited on 04/15/2016).

Carl Edward Rasmussen. “Gaussian processes for machine learning”. In:
(2006). URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1,
1.86.3414 (visited on 02/01/2016).

97

https://books.google.de/books?id=zV0W4729UqkC
https://books.google.de/books?id=zV0W4729UqkC
http://link.springer.com/article/10.1007/s10514-009-9119-x
http://link.springer.com/article/10.1007/s10514-009-9119-x
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5509562
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5509562
http://www.citeulike.org/group/1448/article/813805
http://www.citeulike.org/group/1448/article/813805
https://conference.scipy.org/proceedings/scipy2010/mckinney.html
https://conference.scipy.org/proceedings/scipy2010/mckinney.html
http://arxiv.org/abs/1602.02523
http://www.cim.mcgill.ca/~dudek/417/Papers/matrixOperations.pdf
http://www.cim.mcgill.ca/~dudek/417/Papers/matrixOperations.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.3038
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.3038
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.86.3414
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.86.3414

Appendix A Bibliography

[RN10]

[SB98]

[Sch+o7]

[SGos]

[Sil+16]

[Sneo7y]

[SRB10]

[SSo2]

[Titog]

[TL10]

Stuart Jonathan Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. Prentice Hall, 2010. 1153 pp. 1SBN: 978-0-13-604259-4.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An intro-
duction. 1998. URL: https://books . google . de/books?id=CAFR6IBF4xYC
(visited on 02/01/2016).

Anton Maximilian Schaefer et al. “A neural reinforcement learning approach
to gas turbine control”. In: Neural Networks, 2007. IICNN 2007. International
Joint Conference on. IEEE, 2007, pp. 1691-1696. URL: http://ieeexplore,
ieee.org/xpls/abs_all. jsp?arnumber=4371212 (visited on 06/13/2016).

Edward Snelson and Zoubin Ghahramani. “Sparse Gaussian processes
using pseudo-inputs”. In: Advances in neural information processing systems.
2005, pp. 1257-1264. URL: http://machinelearning.wustl.edu/mlpapers/
paper_files/NIPS2005_543.pdf| (visited on 02/01/2016).

David Silver et al. “Mastering the game of Go with deep neural networks
and tree search”. In: Nature 529.7587 (Jan. 28, 2016), pp. 484—489. 1SSN: 0028-
0836. DOI: [10.1038/nature16961. URL: http://www.nature.com.eaccess,
ub.tum.de/nature/journal/v529/n7587/full/nature16961.html (visited
on 06/07/2016).

Edward Lloyd Snelson. “Flexible and efficient Gaussian process models for
machine learning”. PhD thesis. Citeseer, 2007. URL: http://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.62.4041 (visited on 02/01/2016).

Jean-Luc R. Stevens, Philipp Rudiger, and James A. Bednar. “HoloViews:
Building Complex Visualizations Easily for Reproducible Science”. In:
(2010). URL: http://homepages.inf.ed.ac.uk/jbednar/papers/stevens,
scipy15_draft.pdf|(visited on 06/06/2016).

Bernhard Scholkopf and Alexander J. Smola. Learning with Kernels: Support
Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Jan.
2002. 658 pp. ISBN: 978-0-262-19475-4.

Michalis K. Titsias. “Variational learning of inducing variables in sparse
Gaussian processes”. In: International Conference on Artificial Intelligence and
Statistics. 2009, pp. 567-574. URL: http://machinelearning.wustl.edu/
mlpapers/paper_files/AISTATSQ9_Titsias.pdf (visited on 02/01/2016).

Michalis K. Titsias and Neil D. Lawrence. “Bayesian Gaussian process
latent variable model”. In: International Conference on Artificial Intelligence
and Statistics. 2010, pp. 844-851. URL: http://machinelearning . wustl |

https://books.google.de/books?id=CAFR6IBF4xYC
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4371212
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4371212
http://machinelearning.wustl.edu/mlpapers/paper_files/NIPS2005_543.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/NIPS2005_543.pdf
https://doi.org/10.1038/nature16961
http://www.nature.com.eaccess.ub.tum.de/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com.eaccess.ub.tum.de/nature/journal/v529/n7587/full/nature16961.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.62.4041
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.62.4041
http://homepages.inf.ed.ac.uk/jbednar/papers/stevens.scipy15_draft.pdf
http://homepages.inf.ed.ac.uk/jbednar/papers/stevens.scipy15_draft.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS09_Titsias.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS09_Titsias.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2010_TitsiasL10.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2010_TitsiasL10.pdf

edu/mlpapers/paper_files/AISTATS2010_TitsiasL10. pdf (visited on
02/01/2016).

[Touog] Marc Toussaint. “Technical Note: Computing moments of a truncated
Gaussian for EP in high-dimensions”. In: (2009). URL: https: //pdfs .
semanticscholar.org/b88d/9fd24040ac50743bdaebb@a52af6de98feel . pdf
(visited on 05/30/2016).

[VDos] Guido Van Rossum and Fred L. Drake Jr. Python reference manual. Centrum
voor Wiskunde en Informatica Amsterdam, 1995. URL: http://ft-sipil.
unila. ac. id/dbooks/Python%20Reference %20Manual . pdf| (visited on
05/27/2016).

[WCV11] S. van der Walt, S. C. Colbert, and G. Varoquaux. “The NumPy Array: A
Structure for Efficient Numerical Computation”. In: 13.2 (Mar. 2011), pp. 22—
30. ISSN: 1521-9615. DOI: |10.1109/MCSE. 2011. 37.

99

http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2010_TitsiasL10.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2010_TitsiasL10.pdf
https://pdfs.semanticscholar.org/b88d/9fd24040ac50743bdaebb0a52af6d098fee1.pdf
https://pdfs.semanticscholar.org/b88d/9fd24040ac50743bdaebb0a52af6d098fee1.pdf
http://ft-sipil.unila.ac.id/dbooks/Python%20Reference%20Manual.pdf
http://ft-sipil.unila.ac.id/dbooks/Python%20Reference%20Manual.pdf
https://doi.org/10.1109/MCSE.2011.37

Appendix B

Lists of Figures, Tables and Algorithms

List of Figures

[2.1 The bicycle system as seen from above|.
[.2 The bicycle system as seen from behind and moments of inertial.
[3.1 Agent-environment interaction| L
[3.2 Samples from GP priors| o Lo L
3.3 GPposterior| oo
3.4 SPGPexamplel 0 0.
[3.5 PSO neighbourhood topologies|
l4.1 Episodesin the trainingset|
l4.2 Dataset properties)00 o L.
4.3 GP transition models| o
l4.4 Comparison of linear and saturating reward functions|
l4.5 MAP long-term predictions| 0L
l4.6 Successful MAP trajectory| o Lo L
l4.7 Results using MAP-predictions|,
l4.8 Episodes using MAP-predictions|
l4.9 Results using one step uncertainties|
l4.10 One step uncertainties|
l4.11 Episodes using one step uncertainties|
l4.12 Uncertainty propagation using linearization|
l4.13 Long-term predictions using multi step uncertainties|
l4.14 Long-term predictions using multi step uncertainties with truncation| .
l4.15 Results using multi step uncertainties|
l4.16 Successful trajectory using multi step uncertainties|

15
25
28
34
41

49
50
51
57
59
63
64
65
71
72
73
75

79
81

83
84

101

List of Algorithms

l4.17 Episodes using multi step uncertainties without truncation| 85
l4.18 Episodes using multi step uncertainties with truncation| 86
l4.19 Success rates of all approaches| 0000 88
l4.20 Mean mean rewards of all approaches, 89

List of Tables

[.1 Variables defining the current state of the bicycle system.. 7
[.2 Actions which can be applied to the bicycle system,. 7
[2.3 Physical constants and their values in the bicycle system [RAo8[] 7
[3.1 The PSO parameters used in this thesis.|. 43
l4.1 The parameters used for evaluation in this thesis| 61
l4.2 Comparison of the results of the evaluation| 87

List of Algorithms

l4.1 Sampling bicycle transitions|. o 0000000 48
l4.2 Sampling a bicycle trajectory| o 0oL 48
l4.3 Sampling a bicycledataset, 49
l4.4 Bicycle evaluationsetup|o o 00000 62
l4.5 Computing the successive state distribution| 75

102

	Acknowledgments
	Abstract
	Zusammenfassung
	Introduction
	The Bicycle Benchmark
	Theoretical Background
	Reinforcement Learning
	Problem Statement
	Model-Based Reinforcement Learning

	Gaussian Process Regression
	Definition
	Kernels
	Predictions and Posterior
	Choosing Hyperparameters
	Sparse Approximations using Inducing Inputs

	Particle Swarm Optimization Policy
	Basic Particle Swarm Optimization
	Choosing Parameters

	Summary

	Incorporating Uncertainty in Model-Based Reinforcement Learning
	Transition Models
	Data Sets
	Gaussian Process Models

	Predictions without Uncertainties
	Bicycle Reward Function
	Long-Term predictions
	Evaluation Setup
	Results using MAP Predictions

	Predictions with One-Step Uncertainties
	Long-Term predictions
	Results using One-Step Uncertainties

	Predictions with Multi-Step Uncertainties
	Propagation of Uncertainties using Linearization
	Long-Term predictions
	Posterior States using the Truncation of Gaussians
	Results using Multi-Step Uncertainties

	Discussion of the Approaches
	Summary

	Conclusions
	Bibliography
	Lists of Figures, Tables and Algorithms

