Oblivious Routing and Minimum Bisection Seminar: Approximation Algorithms

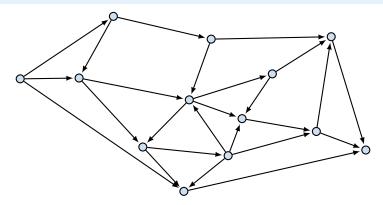
Markus Kaiser

June 3, 2014

Given

- An (un)directed Graph G = (V, E)
- A capacity function $c : E \to \mathbb{R}^+$
- A source s and a target t

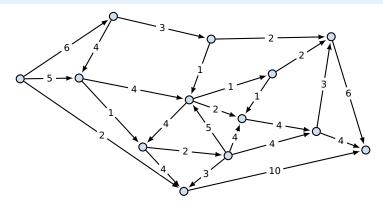
Calculate a maximum possible flow $f: E \to \mathbb{R}^+$ through G.



Given

- An (un)directed Graph G = (V, E)
- **A** capacity function $c : E \to \mathbb{R}^+$
- A source s and a target t

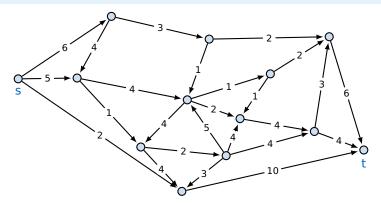
Calculate a maximum possible flow $f : E \to \mathbb{R}^+$ through G.



Given

- An (un)directed Graph G = (V, E)
- **A** capacity function $c : E \to \mathbb{R}^+$
- A source s and a target t

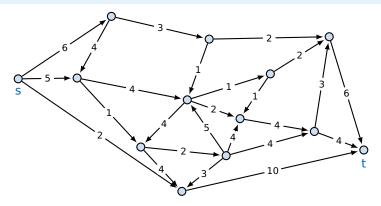
Calculate a maximum possible flow $f : E \to \mathbb{R}^+$ through G.



Given

- An (un)directed Graph G = (V, E)
- **A** capacity function $c : E \to \mathbb{R}^+$
- A source s and a target t

Calculate a maximum possible flow $f : E \to \mathbb{R}^+$ through G.

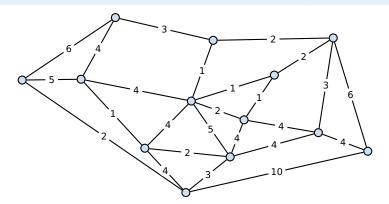


Problem (Multi Commodity Flow)

Given

- An undirected Graph G = (V, E)
- A capacity function $c: E \to \mathbb{R}^+$
 - A demand function $d:V^2
 ightarrow \mathbb{R}^+$

Calculate a flow f with least congestion $\rho = \max_{e \in E} \frac{f_e}{C_o}$

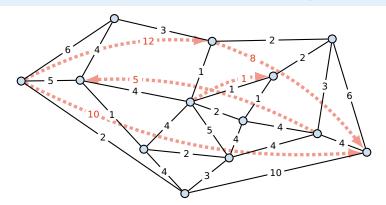


Problem (Multi Commodity Flow)

Given

- An undirected Graph G = (V, E)
- A capacity function $c: E \to \mathbb{R}^+$
- A demand function $d: V^2 \to \mathbb{R}^+$

Calculate a flow f with least congestion $\rho = \max_{e \in E} \frac{f_e}{C_o}$

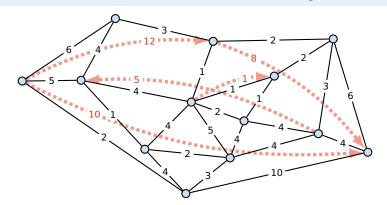


Problem (Multi Commodity Flow)

Given

- An undirected Graph G = (V, E)
- A capacity function $c: E \to \mathbb{R}^+$
- A demand function $d: V^2 \to \mathbb{R}^+$

Calculate a flow f with least congestion $\rho = \max_{e \in E} \frac{f_e}{c_e}$.



Problem (Oblivious Routing)

Given

- An undirected Graph G = (V, E)
- **A** capacity function $c : E \to \mathbb{R}^+$

Calculate a combination of paths for each $(u, v) \in V^2$ such that for any demand function the congestion will be as small as possible.

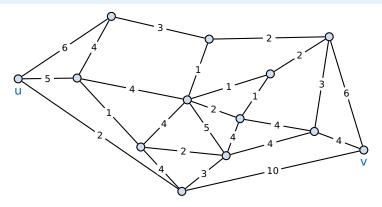


Problem (Oblivious Routing)

Given

- An undirected Graph G = (V, E)
- **A** capacity function $c : E \to \mathbb{R}^+$

Calculate a combination of paths for each $(u, v) \in V^2$ such that for any demand function the congestion will be as small as possible.

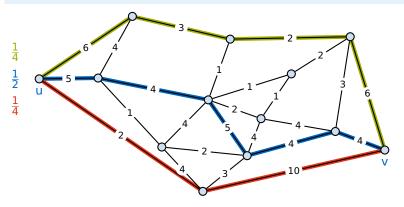


Problem (Oblivious Routing)

Given

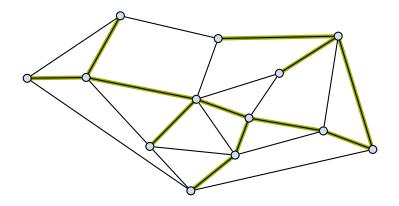
- An undirected Graph G = (V, E)
- A capacity function $c: E \to \mathbb{R}^+$

Calculate a combination of paths for each $(u, v) \in V^2$ such that for any demand function the congestion will be as small as possible.



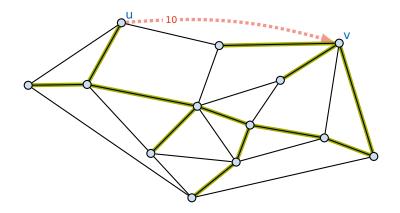
ТШ

■ Choose any spanning tree T of G



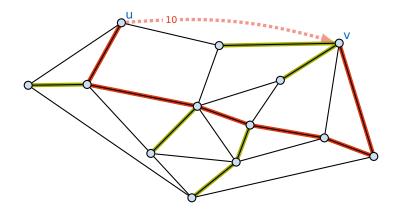
ТШ

■ Choose any spanning tree T of G



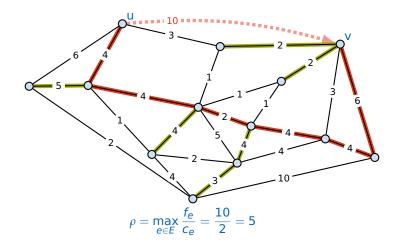
ТШ

■ Choose any spanning tree T of G

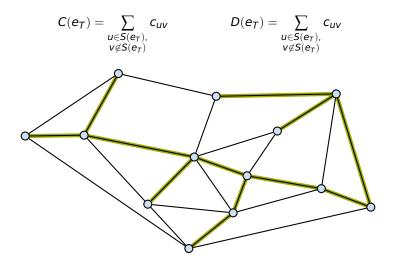


ТШ

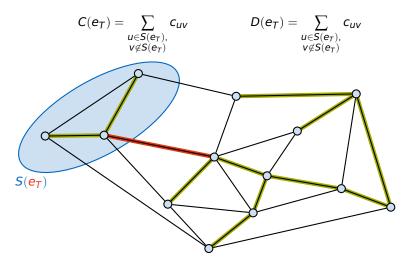
■ Choose any spanning tree T of G



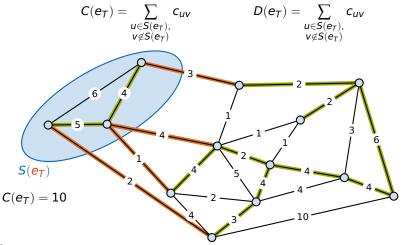
- Removing one edge e_T from a ST creates a node partition $S(e_T)$
- Every such partition has a capacity $C(e_T)$
- And a demand $D(e_T)$



- Removing one edge e_T from a ST creates a node partition $S(e_T)$
- Every such partition has a capacity $C(e_T)$
- And a demand $D(e_T)$



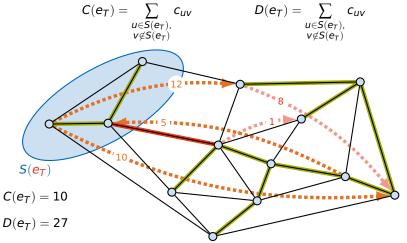
- Removing one edge e_T from a ST creates a node partition $S(e_T)$
- Every such partition has a capacity $C(e_T)$
- And a demand $D(e_T)$



Removing one edge e_T from a ST creates a node partition $S(e_T)$

пп

- Every such partition has a capacity $C(e_T)$
- And a demand $D(e_T)$



Lemma

For any tree T and any tree edge e_T , we know that for any routing in G there must be an edge with congestion

$$ho_{e} \geq rac{D(e_{T})}{C(e_{T})}$$

And therefore the optimal solution ρ^* can be no better.

Suppose we find a tree such that for some α

$$\forall e_T \in E_T. \quad c_{e_T} \geq \frac{1}{\alpha}C(e_T)$$

Then we have

$$\rho_{T} = \max_{e_{T}} \frac{D(e_{T})}{c_{e_{T}}} \le \alpha \max_{e_{T}} \frac{D(e_{T})}{C(e_{T})} \le \alpha \rho^{*}$$

Lemma

For any tree T and any tree edge e_T , we know that for any routing in G there must be an edge with congestion

$$ho_{e} \geq rac{D(e_{T})}{C(e_{T})}$$

And therefore the optimal solution ρ^* can be no better.

Suppose we find a tree such that for some α

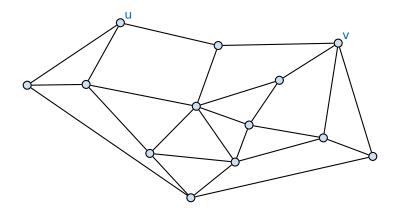
$$\forall e_T \in E_T. \quad c_{e_T} \geq \frac{1}{\alpha}C(e_T)$$

Then we have

$$\rho_{T} = \max_{e_{T}} \frac{D(e_{T})}{c_{e_{T}}} \leq \alpha \max_{e_{T}} \frac{D(e_{T})}{C(e_{T})} \leq \alpha \rho^{*}$$

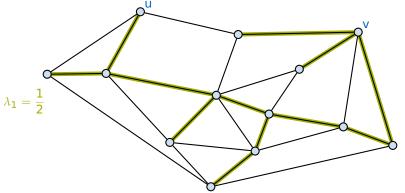
- Choose a set of spanning trees $\{T_i\}$ of G
- And a convex combination λ with $\sum_i \lambda_i = 1$, $\lambda \ge 0$
- Routing is now split according to this combination. For $e \in E$

$$f(\mathbf{e}) = \sum_{\substack{i:\\ \mathbf{e} \in T_i}} \lambda_i D_i(\mathbf{e})$$



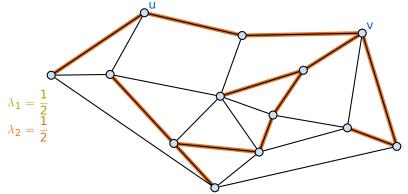
- Choose a set of spanning trees $\{T_i\}$ of G
- And a convex combination λ with $\sum_i \lambda_i = 1$, $\lambda \ge 0$
- Routing is now split according to this combination. For $e \in E$

$$f(\mathbf{e}) = \sum_{\substack{i:\\ \mathbf{e} \in T_i}} \lambda_i D_i(\mathbf{e})$$



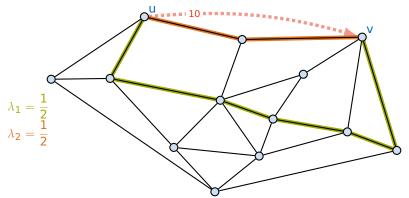
- Choose a set of spanning trees $\{T_i\}$ of G
- And a convex combination λ with $\sum_i \lambda_i = 1$, $\lambda \ge 0$
- Routing is now split according to this combination. For $e \in E$

$$f(\mathbf{e}) = \sum_{\substack{i:\\ \mathbf{e}\in T_i}} \lambda_i D_i(\mathbf{e})$$



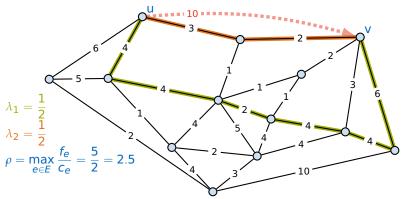
- Choose a set of spanning trees $\{T_i\}$ of G
- And a convex combination λ with $\sum_i \lambda_i = 1$, $\lambda \ge 0$
- Routing is now split according to this combination. For $e \in E$

$$f(\mathbf{e}) = \sum_{\substack{i:\\ \mathbf{e} \in T_i}} \lambda_i D_i(\mathbf{e})$$



- Choose a set of spanning trees $\{T_i\}$ of G
- And a convex combination λ with $\sum_i \lambda_i = 1$, $\lambda \ge 0$
- Routing is now split according to this combination. For $e \in E$

$$f(\mathbf{e}) = \sum_{\substack{i:\\ \mathbf{e} \in T_i}} \lambda_i D_i(\mathbf{e})$$



Routing with multiple Spanning Trees

Suppose we now find a set of trees such that for some α

$$\forall e \in E. \quad c_e \geq \frac{1}{\alpha} \sum_{\substack{i: \ e \in T_i}} \lambda_i C_i(e)$$

Then we have

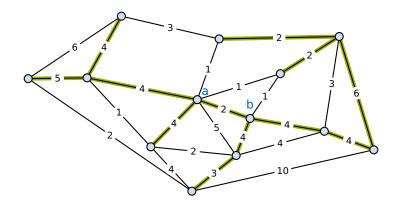
$$\begin{aligned}
\rho &= \max_{e} \frac{f(e)}{c_{e}} \\
&= \max_{e} \frac{\sum_{e \in T_{i}} \lambda_{i} D_{i}(e)}{c_{e}} \\
&\leq \alpha \max_{e} \frac{\sum_{e \in T_{i}} \lambda_{i} D_{i}(e)}{\sum_{e \in T_{i}} \lambda_{i} C_{i}(e)} \\
&\leq \alpha \max_{e} \max_{i} \frac{D_{i}(e)}{C_{i}(e)} \leq \alpha \rho
\end{aligned}$$

*

Pathtrees

Ш

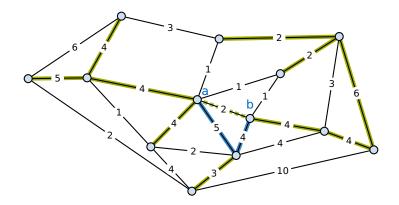
- Identify every edge in a tree with a path in G
- These paths can overlap
- For tree T we get a mapping $P_T: E_T \to E^+$



Pathtrees

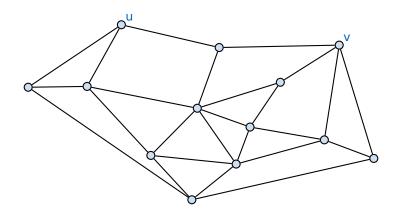
Ш

- Identify every edge in a tree with a path in G
- These paths can overlap
- For tree T we get a mapping $P_T: E_T \to E^+$



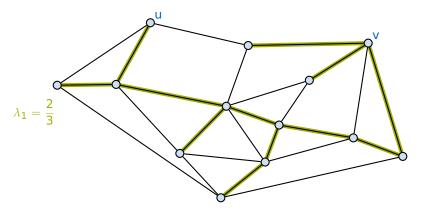
- ТΠ
- Choose a set of pathtrees $\{T_i\}$ of G with combination λ

$$f(\mathbf{e}) = \sum_{i} \lambda_{i} \sum_{\substack{\mathbf{e}_{\mathcal{T}} \in \mathcal{T}_{i}:\\ \mathbf{e} \in \mathcal{P}_{i}(\mathbf{e}_{\mathcal{T}})}} D_{i}(\mathbf{e}_{\mathcal{T}})$$



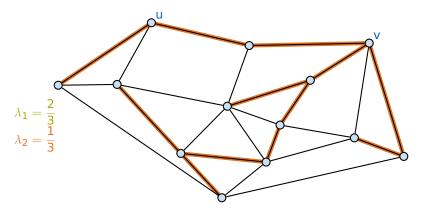
- ТΠ
- Choose a set of pathtrees $\{T_i\}$ of G with combination λ

$$f(\mathbf{e}) = \sum_{i} \lambda_{i} \sum_{\substack{\mathbf{e}_{\mathsf{T}} \in \mathcal{T}_{i}:\\ \mathbf{e} \in \mathcal{P}_{i}(\mathbf{e}_{\mathsf{T}})}} D_{i}(\mathbf{e}_{\mathsf{T}})$$



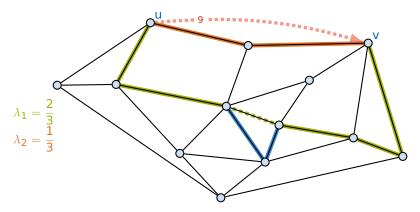
- ТΠ
- Choose a set of pathtrees $\{T_i\}$ of G with combination λ

$$f(\mathbf{e}) = \sum_{i} \lambda_{i} \sum_{\substack{\mathbf{e}_{\mathsf{T}} \in \mathcal{T}_{i}:\\ \mathbf{e} \in \mathcal{P}_{i}(\mathbf{e}_{\mathsf{T}})}} D_{i}(\mathbf{e}_{\mathsf{T}})$$



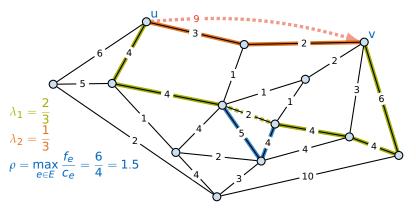
- ٦Π
- Choose a set of pathtrees $\{T_i\}$ of G with combination λ

$$f(\mathbf{e}) = \sum_{i} \lambda_{i} \sum_{\substack{\mathbf{e}_{\mathsf{T}} \in \mathcal{T}_{i}:\\ \mathbf{e} \in \mathcal{P}_{i}(\mathbf{e}_{\mathsf{T}})}} D_{i}(\mathbf{e}_{\mathsf{T}})$$



- ПΠ
- Choose a set of pathtrees $\{T_i\}$ of G with combination λ

$$f(\mathbf{e}) = \sum_{i} \lambda_{i} \sum_{\substack{\mathbf{e}_{\mathsf{T}} \in \mathcal{T}_{i}:\\ \mathbf{e} \in \mathcal{P}_{i}(\mathbf{e}_{\mathsf{T}})}} D_{i}(\mathbf{e}_{\mathsf{T}})$$



Again suppose we now find a set of trees such that for some α

$$\forall \boldsymbol{e} \in \boldsymbol{E}. \quad \boldsymbol{c}_{\boldsymbol{e}} \geq \frac{1}{\alpha} \sum_{i} \lambda_{i} \sum_{\substack{\boldsymbol{e}_{\boldsymbol{\tau}} \in \boldsymbol{T}_{i}:\\ \boldsymbol{e} \in \boldsymbol{P}_{i}(\boldsymbol{e}_{\boldsymbol{\tau}})}} \boldsymbol{C}_{i}(\boldsymbol{e}_{\boldsymbol{\tau}})$$

пп

Then we have

$$\rho = \max_{e} \frac{f(e)}{c_{e}}$$

$$\leq \alpha \max_{e} \frac{\sum_{i} \lambda_{i} \sum_{\substack{e_{T} \in T_{i}: \\ e \in P_{i}(e_{T})}} D_{i}(e_{T})}{\sum_{i} \lambda_{i} \sum_{\substack{e_{T} \in T_{i}: \\ e \in P_{i}(e_{T})}} C_{i}(e_{T})}$$

$$\leq \alpha \max_{e} \max_{i} \frac{D_{i}(e)}{C_{i}(e)} \leq \alpha \rho^{*}$$

Again suppose we now find a set of trees such that for some α

$$\forall \boldsymbol{e} \in \boldsymbol{E}. \quad \boldsymbol{c}_{\boldsymbol{e}} \geq \frac{1}{\alpha} \sum_{i} \lambda_{i} \sum_{\substack{\boldsymbol{e}_{\boldsymbol{\tau}} \in \boldsymbol{T}_{i}:\\ \boldsymbol{e} \in \boldsymbol{P}_{i}(\boldsymbol{e}_{\boldsymbol{\tau}})}} \boldsymbol{C}_{i}(\boldsymbol{e}_{\boldsymbol{\tau}})$$

Then we have

$$\rho = \max_{e} \frac{f(e)}{c_{e}}$$

$$\leq \alpha \max_{e} \frac{\sum_{i} \lambda_{i} \sum_{\substack{e_{T} \in \mathcal{T}_{i}: \\ e \in P_{i}(e_{T})}} D_{i}(e_{T})}{\sum_{i} \lambda_{i} \sum_{\substack{e_{T} \in \mathcal{T}_{i}: \\ e \in P_{i}(e_{T})}} C_{i}(e_{T})}$$

$$\leq \alpha \max_{e} \max_{i} \frac{D_{i}(e)}{C_{i}(e)} \leq \alpha \rho^{*}$$

How do we find such a set of trees? How large is α ?

Primal Program

Let \mathcal{I} be the exponentially large set of all pathtrees. We want to find the best trees with smallest α .

$$\begin{array}{ll} \min_{\alpha,\lambda} & \alpha \\ \text{s.t.} & \sum_{i \in \mathcal{I}} \lambda_i \sum_{\substack{e_T \in \mathcal{T}_i: \\ (\boldsymbol{u},\boldsymbol{v}) \in \mathcal{P}_i(e_T)}} C_i(e_T) \leq \alpha C_{\boldsymbol{u}\boldsymbol{v}} & \forall \boldsymbol{u},\boldsymbol{v} \in \boldsymbol{V} \\ & \sum_{i \in \mathcal{I}} \lambda_i = 1 \\ & \lambda \geq 0 \end{array}$$

We want to show that $\alpha \in \mathcal{O}(\log n)$

Let ${\mathcal I}$ be the exponentially large set of all pathtrees.

$$\begin{array}{ll} \max_{z,\mathcal{L}} & z \\ \text{s.t.} & \sum_{u,v \in V} c_{uv}\ell_{uv} = 1 \\ & z \leq \sum_{e_T \in \mathcal{T}_i} C_i(e_T) \sum_{(u,v) \in P_i(e_T)} \ell_{uv} \quad \forall i \in \mathcal{I} \\ & \mathcal{L} \geq 0 \end{array}$$

If $z \in \mathcal{O}(\log n)$ then $\alpha \in \mathcal{O}(\log n)$ by strong duality

Let ${\mathcal I}$ be the exponentially large set of all pathtrees.

$$\begin{array}{ll} \max_{z,\mathcal{L}} & z \\ \text{s.t.} & \sum_{u,v \in V} c_{uv}\ell_{uv} = 1 \\ & z \leq \sum_{e_T \in \mathcal{T}_i} C_i(e_T) \sum_{(u,v) \in P_i(e_T)} \ell_{uv} \quad \forall i \in \mathcal{I} \\ & \mathcal{L} \geq 0 \end{array}$$

- We interpret the ℓ_{uv} as edge lengths in G
- They define a shortest path metric $d_{\ell}(u, v)$
- For an edge e = (x, y) we write $d_{\ell}(e) \coloneqq d_{\ell}(x, y)$

Let ${\mathcal I}$ be the exponentially large set of all pathtrees.

$$\begin{array}{ll} \max_{z,\mathcal{L}} & z \\ \text{s.t.} & \sum_{u,v \in V} c_{uv} \ell_{uv} = 1 \\ & z \leq \sum_{e_T \in T_i} C_i(e_T) \underbrace{\sum_{(u,v) \in P_i(e_T)} \ell_{uv}}_{\mathcal{L} \geq 0} \quad \forall i \in \mathcal{I} \\ & \mathcal{L} \geq 0 \end{array}$$

• We interpret the ℓ_{uv} as edge lengths in G

- They define a shortest path metric $d_{\ell}(u, v)$
- For an edge e = (x, y) we write $d_{\ell}(e) \coloneqq d_{\ell}(x, y)$

ШП

Dual Program

Let ${\mathcal I}$ be the exponentially large set of all pathtrees.

$$\begin{array}{ll} \max_{z,\mathcal{L}} & z \\ \text{s.t.} & \sum_{u,v \in V} c_{uv} \ell_{uv} = 1 \\ & z \leq \sum_{e_T \in T_i} C_i(e_T) d_\ell(e_T) \qquad \forall i \in \mathcal{I} \\ & \mathcal{L} \geq 0 \end{array}$$

- We interpret the ℓ_{UV} as edge lengths in G
- They define a shortest path metric $d_{\ell}(u, v)$
- For an edge e = (x, y) we write $d_{\ell}(e) := d_{\ell}(x, y)$

Let ${\mathcal I}$ be the exponentially large set of all pathtrees.

$$\begin{array}{ll} \max_{z,\mathcal{L}} & z \\ \text{s.t.} & \sum_{u,v \in V} c_{uv}\ell_{uv} = 1 \\ & z \leq \underbrace{\sum_{e_T \in \mathcal{T}_i} C_i(e_T) d_\ell(e_T)}_{\mathcal{L} \geq 0} \quad \forall i \in \mathcal{I} \\ & \mathcal{L} \geq 0 \end{array}$$

• We interpret the ℓ_{uv} as edge lengths in G

- They define a shortest path metric $d_{\ell}(u, v)$
- For an edge e = (x, y) we write $d_{\ell}(e) := d_{\ell}(x, y)$

ТП

Dual Program

Let ${\mathcal I}$ be the exponentially large set of all pathtrees.

$$\begin{array}{ll} \max_{z,\mathcal{L}} & z \\ \text{s.t.} & \sum_{u,v \in V} c_{uv}\ell_{uv} = 1 \\ & z \leq \min_{i \in \mathcal{I}} \sum_{e_T \in T_i} C_i(e_T) d_\ell(e_T) \\ & \mathcal{L} \geq 0 \end{array}$$

- We interpret the ℓ_{UV} as edge lengths in G
- They define a shortest path metric $d_{\ell}(u, v)$
- For an edge e = (x, y) we write $d_{\ell}(e) := d_{\ell}(x, y)$

Let ${\mathcal I}$ be the exponentially large set of all pathtrees.

$$\begin{array}{ll} \max_{\mathcal{L}} & \min_{i \in \mathcal{I}} \sum_{e_T \in T_i} C_i(e_T) d_\ell(e_T) \\ \text{s.t.} & \sum_{u, v \in V} c_{uv} \ell_{uv} = 1 \\ & \mathcal{L} \geq 0 \end{array}$$

Now suppose

$$\sum_{u,v\in V} c_{uv}\ell_{uv} = \beta > 0$$

If we scale every length by $\frac{1}{\beta}$ our solution will change by $\frac{1}{\beta}$

Let ${\mathcal I}$ be the exponentially large set of all pathtrees.

$$\begin{array}{ll} \max_{\mathcal{L}} & \min_{i \in \mathcal{I}} \sum_{e_T \in T_i} C_i(e_T) d_\ell(e_T) \\ \text{s.t.} & \sum_{\underline{u, v \in V}} c_{uv} \ell_{uv} = 1 \\ & \mathcal{L} \geq 0 \end{array}$$

Now suppose

$$\sum_{u,v\in V} c_{uv}\ell_{uv} = \beta > 0$$

If we scale every length by $\frac{1}{\beta}$ our solution will change by $\frac{1}{\beta}$

ПΠ

Dual Program

Let ${\mathcal I}$ be the exponentially large set of all pathtrees.

$$\begin{array}{ll} \max_{\mathcal{L}} & \min_{i \in \mathcal{I}} \frac{\sum_{e_T \in T_i} C_i(e_T) d_{\ell}(e_T)}{\sum_{u, v \in V} c_{uv} \ell_{uv}} \\ \text{s.t.} & \mathcal{L} \geq 0 \end{array}$$

Now suppose

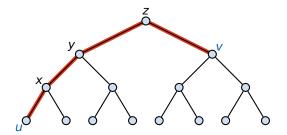
$$\sum_{u,v\in V} c_{uv}\ell_{uv} = \beta > 0$$

If we scale every length by $\frac{1}{\beta}$ our solution will change by $\frac{1}{\beta}$

Theorem (Tree Metric)

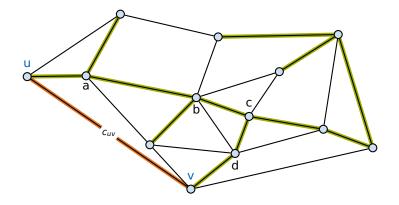
For our metric d_{ℓ} there exists a tree metric (V, M) with

$$d_{\ell}(u, v) \leq M_{uv} \qquad \forall u, v \in V$$
$$\sum_{u,v \in V} c_{uv} M_{uv} \leq \mathcal{O}(\log n) \sum_{u,v \in V} c_{uv} d_{\ell}(u, v)$$

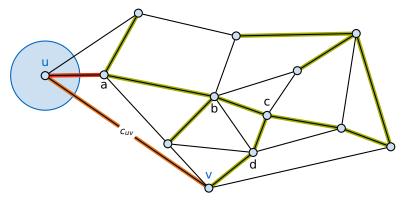


 $M_{uv} = M_{ux} + M_{xy} + M_{yz} + M_{zv}$

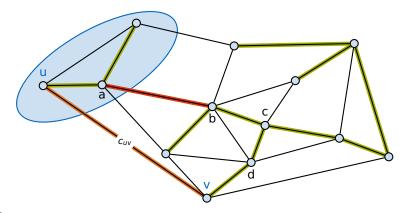
$$\sum_{(x,y)\in E_T} C(x,y)M_{xy} = \sum_{(u,v)\in E} c_{uv}M_{uv}$$



$$\sum_{(u,v)\in E_T} C(x,y)M_{xy} = \sum_{(u,v)\in E} c_{uv}M_{uv}$$

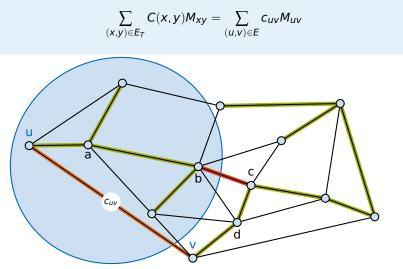


$$\sum_{(u,v)\in E_T} C(x,y)M_{xy} = \sum_{(u,v)\in E} c_{uv}M_{uv}$$

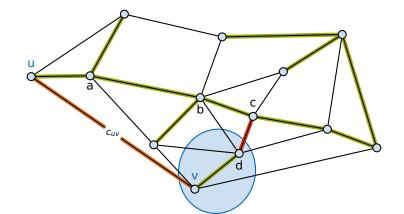


ТП

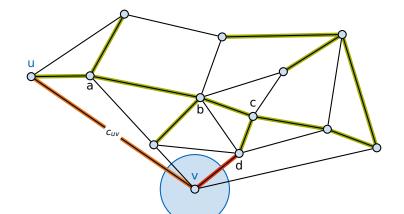
Lemma



$$\sum_{(x,y)\in E_T} C(x,y)M_{xy} = \sum_{(u,v)\in E} c_{uv}M_{uv}$$



$$\sum_{(x,y)\in E_T} C(x,y)M_{xy} = \sum_{(u,v)\in E} c_{uv}M_{uv}$$



Let ${\mathcal I}$ be the exponentially large set of all pathtrees.

$$\begin{array}{ll} \max_{\mathcal{L}} & \min_{i \in \mathcal{I}} \frac{\sum_{e_T \in \mathcal{T}_i} C_i(e_T) d_{\ell}(e_T)}{\sum_{u, v \in V} c_{uv} \ell_{uv}} \\ \text{s.t.} & \mathcal{L} \ge 0 \end{array}$$

For any \mathcal{L} we know that for the minimizing tree T_i holds

$$\begin{split} \sum_{\mathbf{e}_T \in \mathcal{T}_i} C_i(\mathbf{e}_T) d_\ell(\mathbf{e}_T) &\leq \sum_{\mathbf{e}_T \in \mathcal{T}_i} C_i(\mathbf{e}_T) M_{\mathbf{e}_T} \\ &= \sum_{u, v \in V} c_{uv} M_{uv} \\ &\leq \mathcal{O}(\log n) \sum_{u, v \in V} c_{uv} d_\ell(u, v) \\ &\leq \mathcal{O}(\log n) \sum_{u, v \in V} c_{uv} \ell_{uv} \\ &\leq \sum_{u, v \in V} C_{uv} \ell_{uv} \\ &\leq \mathcal{O}(\log n) \sum_{u, v \in V} C_{uv} \ell_{uv} \\ \end{split}$$

Primal Program

Let \mathcal{I} be the exponentially large set of all pathtrees. We want to find the best trees with smallest α .

$$\begin{array}{ll} \min_{\alpha,\lambda} & \alpha \\ \text{s.t.} & \sum_{i \in \mathcal{I}} \lambda_i \sum_{\substack{e_T \in \mathcal{T}_i: \\ (u,v) \in P_i(e_T)}} C_i(e_T) \leq \alpha C_{uv} & \forall u,v \in V \\ & \sum_{i \in \mathcal{I}} \lambda_i = 1 \\ & \lambda \geq 0 \end{array}$$

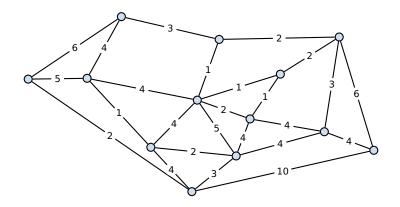
There is a λ such that $\alpha \in \mathcal{O}(\log n)$

But why are polynomially many trees enough?

This gives an $\mathcal{O}(\log n)$ -approximation

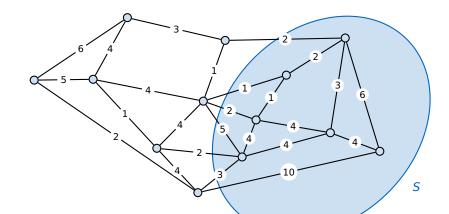
Given

- An undirected Graph G = (V, E)
- A cost function $c: E \to \mathbb{R}^+$



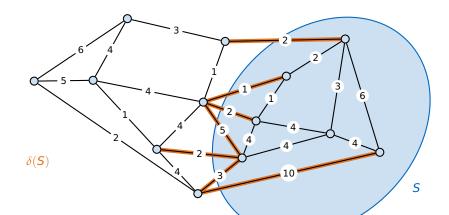
Given

- An undirected Graph G = (V, E)
- A cost function $c : E \to \mathbb{R}^+$



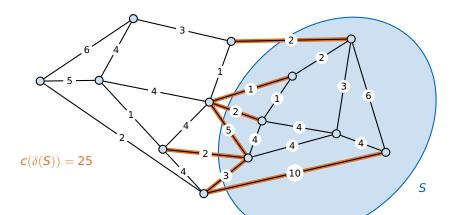
Given

- An undirected Graph G = (V, E)
- A cost function $c : E \to \mathbb{R}^+$



Given

- An undirected Graph G = (V, E)
- A cost function $c : E \to \mathbb{R}^+$



Minimum Bisection Approximation

Given graph G = (V, E) and cost function $c : E \to \mathbb{R}^+$.

- **1** Interpret costs c(e) as capacities
- 2 Solve oblivious routing on G, obtaining trees T_i
- **3** Find minimum tree bisections X_i for all trees T_i
- 4 Choose the X_i with lowest $c(\delta(X_i))$

We have to show

- What the X_i actually are
- An $O(\log n)$ -approximation guarantee
- That we can find the X_i in polynomial time

Minimum Bisection Approximation

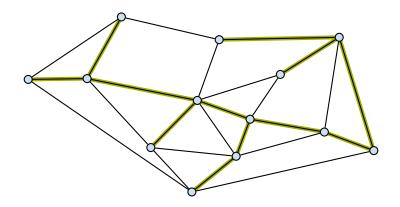
Given graph G = (V, E) and cost function $c : E \to \mathbb{R}^+$.

- **1** Interpret costs c(e) as capacities
- 2 Solve oblivious routing on G, obtaining trees T_i
- **3** Find minimum tree bisections X_i for all trees T_i
- 4 Choose the X_i with lowest $c(\delta(X_i))$

We have to show

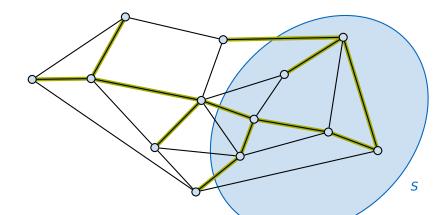
- What the X_i actually are
- An $O(\log n)$ -approximation guarantee
- That we can find the X_i in polynomial time

Given a spanning tree T of G with an edge e_T ∈ E_T
 Define a new cost function c_T using tree splits



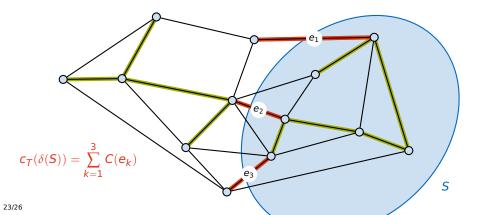
Tree Bisections

Given a spanning tree T of G with an edge e_T ∈ E_T
 Define a new cost function c_T using tree splits



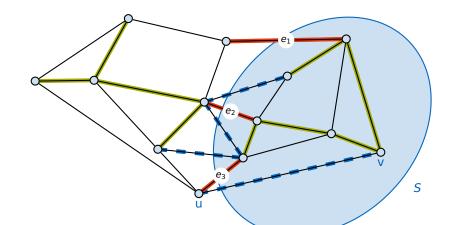
Tree Bisections

Given a spanning tree T of G with an edge e_T ∈ E_T
 Define a new cost function c_T using tree splits



For any spanning tree T and any $S \subseteq V$ we have

 $c(\delta(S)) \leq c_T(\delta(S))$



Let $\{T_i\}$ be a solution to the oblivious flow problem on G. Then for any $S \subseteq V$ we have

$$\sum_{i} \lambda_{i} c_{\mathcal{T}_{i}}(\delta(\boldsymbol{S})) \leq \mathcal{O}(\log n) c(\delta(\boldsymbol{S}))$$

Remember from the primal program that for all $u, v \in V$

$$\sum_{i} \lambda_{i} \sum_{\substack{e_{T} \in T_{i}: \\ (u,v) \in P_{i}(e_{T})}} C_{i}(e_{T}) \leq \mathcal{O}(\log n) c_{uv}$$

• We sum up the inequalities for all $(u, v) \in \delta(S)$

Let $\{T_i\}$ be a solution to the oblivious flow problem on G. Then for any $S \subseteq V$ we have

$$\sum_{i} \lambda_i c_{\mathcal{T}_i}(\delta(\mathcal{S})) \leq \mathcal{O}(\log n) c(\delta(\mathcal{S}))$$

We sum up the inequalities for all (u, v) ∈ δ(S)
This gives us

$$\sum_{i} \lambda_{i} \sum_{\substack{(u,v) \in \delta(S) \\ (u,v) \in P_{i}(e_{T})}} \sum_{\substack{e_{T} \in T_{i}: \\ (u,v) \in P_{i}(e_{T})}} C_{i}(e_{T}) \leq \mathcal{O}(\log n)c(\delta(S))$$

We are done with the observation that

$$c_{\mathcal{T}_i}(\delta(S)) = \sum_{\substack{e_T \in E_{\mathcal{T}_i}:\\ e_T \in \delta(S)}} C_i(e_T) \le \sum_{\substack{(u,v) \in \delta(S) \\ (u,v) \in P_i(e_T)}} C_i(e_T)$$

Minimum Bisection Approximation

Given graph G = (V, E) and cost function $c : E \to \mathbb{R}^+$.

- **1** Interpret costs c(e) as capacities
- 2 Solve oblivious routing on G, obtaining trees T_i
- **3** Find minimum tree bisections X_i for all trees T_i
- 4 Choose the X_i with lowest $c(\delta(X_i))$

Let now X^* , X_i be the optimal solutions on G and the T_i . Then

$$\sum_{i} \lambda_{i} c(\delta(X_{i})) \leq \sum_{i} \lambda_{i} c_{T_{i}}(\delta(X_{i}))$$
$$\leq \sum_{i} \lambda_{i} c_{T_{i}}(\delta(X^{*}))$$
$$\leq \mathcal{O}(\log n) c(\delta(X^{*}))$$

This also holds for the best X_i, giving an O(log n)-approximation
 How to find the X_i?