
Markus Kaiser

Chair for Foundations of Software Reliability
and Theoretical Computer Science

Department of Informatics
Technical University of Munich

Learning Systems Group
Technology
Siemens AG

Dissertation

Structured Models with Gaussian Processes

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

StructuredModelswithGaussian Processes

Markus Kaiser

Die Dissertation wurde am 11.01.2021 bei der Technischen Universität München eingereicht
und durch die Fakultät für Informatik am 27.04.2021 angenommen.

Vorsitzender:
Prof. Dr. Tobias Nipkow

Prüfende der Dissertation:
1. Hon.-Prof. Dr. Thomas A. Runkler
2. Prof. Dr. Daniel Cremers
3. Prof. Dr. Carl Henrik Ek,

University of Cambridge

Zusammenfassung

Mit Methoden des maschinellen Lernens konnten in den letzten Jahren in einer Vielzahl
von digitalen Anwendungsbereichen wie Spracherkennung, Computer-Vision oder
Videospielen beeindruckende Erfolge erzielt werden. Der Transfer zu Anwendungen in
der physikalischen Welt hat sich jedoch als eine Herausforderung erwiesen, da sie eine
Reihe neuer Anforderungen mit sich bringen. Lernverfahren müssen Expertenwissen
effizient nutzen, mit wenigen Daten auskommen und Unsicherheiten bestimmen. In
dieser Dissertation wird untersucht, wie strukturierte probabilistische Modelle es uns
ermöglichen, diesen Anforderungen gerecht zu werden. Strukturierte Modelle kombi-
nieren datengestützte und theoriegetriebeneModellierungsansätze, um Expertenwissen
zu formalisieren und dennoch neue Erkenntnisse aus Daten zu gewinnen.

In dieser Arbeit formulieren wir probabilistische strukturierte Modelle mithilfe von
bayesschen nicht-parametrischen Methoden. Wir nutzen Informationen über die Struk-
tur des Lernproblems, um Modelle zu formulieren, die Wissen reproduzieren, für
Domänenexperten verständlich sind, physikalisch plausible Vorhersagen in unbekann-
ten Situationen liefern und ihre eigene Unsicherheit beziffern können. Dazu betten wir
allgemeine Funktionsapproximatoren in probabilistische Modelle ein und formulieren
Inferenzmethoden auf Basis von verketteten Gaußprozessen. Am Beispiel realer indus-
trieller Anwendungen wie der Erkennung fehlerhafter Sensoren und der Vorhersage der
Stromerzeugung eines Windparks zeigen wir, dass strukturierte Modelle informative
Unsicherheiten liefern, interpretierbar sind und erfolgreich generalisieren.

In Situationen, in denen die interne Struktur und das Generalisierungsverhalten von
Modellen in den Mittelpunkt rücken, kann Modellselektion basierend auf klassischen
Metriken unzureichend sein, um bevorzugte Modelle zu identifizieren. Wir formali-
sieren den subjektiven Anteil der Modellselektion, indem wir die Aufgabe, die ein
Modell lösen soll, in die Auswahl miteinbeziehen. Wir zeigen an einem Reinforcement-
Learning Problem, dass semantisch korrekte Modelle andere Modelle mit ähnlichen
Metriken übertreffen und es Experten ermöglichen, das Verhalten von Agenten zu
beeinflussen. Wir untersuchen die Eigenschaften strukturierter Modelle in einem brei-
teren Kontext, die Grenzen gängiger Inferenzverfahren und disktieren, warum Modelle

v

Zusammenfassung

mit suboptimalen Metriken in hierarchischen Systemen erfolgreich eingesetzt wer-
den können und wie bayessche Inferenzprobleme formulierten werden können, die
nachgelagerte Aufgaben berücksichtigen.

vi

Abstract

Machine learning methods have seen great success recently in a wide range of digital
domains such as speech recognition, computer vision or video games. However, bridg-
ing the gap to applications in the physical world has proved to be challenging as they
introduce a new set of requirements. Machine learning systems must make efficient use
of expert knowledge, handle low data regimes, and quantify uncertainties. This thesis
explores how structured probabilistic models allow us to cope with these requirements.
Structured models combine black-box and white-box modeling approaches to formalize
expert knowledge while still being able to gain new insights from data.

In this work, we formulate Bayesian structured models using methods from Bayesian
nonparametrics. We use information about the structure of a learning problem to
formulate machine learning models that reproduce knowledge, are understandable
for domain-experts, make physically plausible predictions in unseen situations and
can quantify their own uncertainty. We explore how to embed general function
approximators in Bayesian probabilistic models to enforce structure and discuss how
to formulate inference schemes based on composite and hierarchical Gaussian process
models. Using real-world industrial applications such as the detection of faulty sensors
and the prediction of power generation in a wind-farm as examples, we show how to
use structured models to factorize uncertainties, achieve interpretability, and generalize
to unobserved inputs.

In settings where internal structure and generalization behavior come into focus, model
selection using marginal likelihoods can be insufficient to identify desirable models.
We consider how to formalize the subjectiveness in model selection through the task
a model will be used to solve. We show that in a reinforcement learning problem,
semantic models outperform other models with similar performance metrics and allow
experts to influence agent behavior. We explore the properties of structured models in
a broader context and discuss the limits of current inference schemes, why models with
suboptimal marginal likelihoods can perform well in hierarchical systems, and how to
formulate Bayesian inference problems that take downstream tasks into account.

vii

Acknowledgements

I want to thankmy supervisor Prof. Dr. Thomas A. Runkler for his guidance and support.
Thomas has always encouraged me to explore my ideas while offering invaluable advice
andmaking sure I do not lose focus. I am very grateful tomy co-supervisor Prof. Dr. Carl
Henrik Ek for his enthusiasm and mentorship. He is an inspiring teacher and shows me
what is important in academia. Thank you for welcoming me to your research group,
making Bristol a second home for me, and the countless discussions about the big
picture and the small details. I also want to thank my advisor Dr. Clemens Otte for his
valuable input and his exceptional ability to combine research and applications. I could
not have asked for better supervision or a more encouraging research environment
during my studies.

I am thankful to everyone at Siemens and the Learning Systems group, especially
Volkmar Sterzing for giving us PhD candidates the freedom to pursue our interests
and enabling us to work on exciting industrial applications. I am grateful to Steffen
Udluft and Hans Georg Zimmermann for always taking the time to discuss new ideas
and for broadening my horizon as well as my fellow PhD candidates Stefan Depeweg,
Daniel Hein and Phillip Swazinna for many discussions, whiteboard-drawings and
meetings at the Biergarten. Thanks to Marion Eigner for her refreshing perspective
and friendship.

I feel lucky to be part of a motivating and unique group in Bristol and Bath. Thank
you to Prof. Dr. Neill Campbell for your passion for good research and for your help in
pursuing worthwhile ideas. I want to thank Erik Bodin, Ieva Kazlauskaite and Ivan
Ustyuzhaniov for many thoughtful discussions and collaborations.

A big thank you to my siblings Matthias and Andrea for your support and encour-
agement. I sincerely thank my parents, Pia and Robert, for enabling and inspiring
us to follow our dreams and for your unconditional support. Above all I want to
thank Hannah for her patience and understanding while being in COVID-19 lockdown
with somebody writing their thesis. Thank you for all the lunches, the much-needed
distractions, the happiness, and your love.

ix

Contents

Zusammenfassung v

Abstract vii

Acknowledgements ix

1 Introduction 1
1.1 Black-Box Models in Deep Learning 2
1.2 White-Box Models in Bayesian Statistics 3
1.3 Structured Models with Gaussian Processes 5
1.4 Contributions . 7
1.5 Thesis Outline . 9

2 Preliminaries 11
2.1 Machine Learning Problems . 11
2.2 Statistical Learning . 16
2.3 Bayesian Machine Learning . 20
2.4 Gaussian Processes . 31
2.5 Sparse Gaussian Processes with Inducing Points 41
2.6 Variational Sparse Gaussian Process Approximations 45
2.7 Hierarchical Gaussian Processes . 52

3 Data Association 59
3.1 Data Association with Gaussian Processes 62
3.2 Variational Approximation . 63
3.3 Experiments . 68
3.4 Discussion . 76

4 Non-Linear Time-Series Alignment 79
4.1 Aligned Multi-Output Gaussian Processes 80
4.2 Variational Approximation . 83
4.3 Model Interpretation . 86

xi

Contents

4.4 Experiments . 87
4.5 Discussion . 96

5 Interpretable Reinforcement Learning 99
5.1 The Wet-Chicken Benchmark . 101
5.2 Probabilistic Policy Search . 103
5.3 Experiments . 108
5.4 Discussion . 118

6 Discussion and Future Work 121
6.1 Inference in Hierarchical Models . 123
6.2 Surrogate Models For Bayesian Optimization 125
6.3 Bayesian Reinforcement Learning . 127
6.4 Future Work . 133

Bibliography 135

List of Figures 147

List of Tables 149

xii

Chapter 1

Introduction

In many machine learning problems, the task is to derive a model for observational data
that has been generated by some process in nature that is not fully understood. Starting
with an input-vector 𝐱 describing its initial state, nature produces an output-vector 𝐲.
Given a set of observational pairs (𝐱, 𝐲), we want to learn about the underlying, possibly
stochastic, functional dependency

𝐱

𝐲

Nature 𝐲 = 𝑓 (𝐱). (1.1)

The goal of learning is often to either gain new knowledge about nature by describing
the data or to be able to predict outputs 𝐲∗ for previously unseen inputs 𝐱∗. While
traditional statistics favor the white-box modeling culture that focuses on explaining
observational data using causal theoretic models, machine learning and specifically
deep learning is more closely associated with the black-box culture, which focuses
on prediction instead [19, 99]. The impressive successes of both cultures have been
achieved in different application domains, however, which is due to their respective
pros and cons.

1

Chapter 1 Introduction

1.1 Black-Box Models in Deep Learning

When formulating a black-box model, we accept that we cannot model nature directly
and focus on the functional dependency 𝑓 instead. The approach is to find an algorithm
𝑓𝐰 with parameters 𝐰 that approximates the true dependency 𝑓 in

𝐱

𝐲

Neural network 𝐲 = 𝑓𝐰(𝐱). (1.2)

Using general function approximators like neural networks with a typically large set of
weights 𝐰, any smooth dependency can be modeled given enough observations. With
growing computational power and the availability of data sets, black-box approaches
have led to impressive advancements in domains that are hard to formalize. Successes
have been seen in a wide range of digital tasks such as speech recognition [7, 24, 60],
computer vision [76, 92], non-cooperative games [11, 100], or machine translation [63].
The abundance of data in these domains shifts the focus away from traditional statis-
tical models to highly adaptable and scalable approaches. Black-box models do not
claim to uncover or represent knowledge about the true process in nature but capture
correlations between inputs and outputs instead. Their advantages and disadvantages
can be summarized as follows.

Pros (Deep learning)
Universal approximation Neural networks can potentially find useful structure

in any data set, even if the problem domain is not well-understood or cannot
be formalized by experts.

Simple portability Black-box model formulations can be applied to many differ-
ent applications due to their assumed independence of the concrete problem.

Strong scalability The internal structure of black-box models can often be chosen
to leverage computational power optimally. Models in deep learning can
cope with billions of parameters and observations.

2

1.2 White-Box Models in Bayesian Statistics

Cons (Deep learning)
Data bias Black-box approaches can only uncover the structure that is present in

the training data. They, therefore, typically require a large amount of training
data in all parts of the system.

Weak interpretability Black-box models are not designed to offer causal expla-
nations of observations. As a result, the complex internal structure of models
in deep learning is generally not understandable to human experts [91].

Unclear generalization A black-box model can only be evaluated in terms of its
ability to predict unseen data. In parts of a system where no data is available,
it is hard to make statements about when or how a model generalizes.

The highly adaptable and scalable models from deep learning excel at finding structure
in large and complex data sets. However, the black-box approach struggles in environ-
ments where the model’s internal structure or the generalization behavior come into
focus.

1.2 White-Box Models in Bayesian Statistics

White-box models are based on strong and human-interpretable internal structure.
The focus is on describing and understanding observational data and thus the true gen-
erative process in nature. In modern science, white-box models are used in large-scale
experiments such as in particle physics [107] or astronomy [27, 28]. In such experi-
ments, noisy and limited data play a major role. To cope with imperfect knowledge,
causal theoretic models are extended with statistical theory to formulate probabilistic
models. Probabilistic models consider the likelihood p(𝐲 |𝐱) based on knowledge about
the model components , , … in

𝐱

𝐲

p(𝐲 |𝐱) = ∫ p(𝐲, , , , |𝐱) d d d d . (1.3)

3

Chapter 1 Introduction

Bayesian inference offers a framework for formalizing this knowledge in prior assump-
tions and combining them with data. Using Bayes’ rule, a distribution of plausible
models is reweighed by their ability to generate data to yield a posterior distribution
p(, , , |𝐱, 𝐲) over plausible explanations. To make predictions about novel ob-
servations p(𝐲∗ | 𝐱∗), all plausible models are taken into account, allowing us to both
quantify confidence in predictions and take more unlikely but relevant scenarios into
consideration. Scientific white-box models are driven by strong theory that provides
causal explanations. Observational data is used to answer specific questions about a
small number of hypotheses, leading to the following pros and cons.

Pros (Bayesian statistics)
Strong interpretability Since a white-box model is constructed from human-

interpretable components and causal theory, model behavior and predictions
are understandable to experts.

Trustworthy predictions Bayesian probabilisticmodels quantify their confidence
about predictions in a principled manner based on explicit assumptions.

Safe generalization The generalization of white-box models is driven by human-
interpretable causal theory that can be evaluated and verified by experts.

Cons (Bayesian statistics)
Model bias All insights from white-box models are with respect to strong causal

theoretic modeling assumptions. Wrong or insufficient assumptions cannot
be compensated through data, limiting the applicability of white-box models
in problem domains that are hard to formalize.

Subjective model-selection White-box models aim to model causal relation-
ships in nature. It is a hard problem to select the correct model from a set of
plausible explanations [112].

Weak scalability The theory behind white-box models is often problem-specific
and hard to transfer to other applications. Similarly, complex theory often
requires specialized learning algorithms that do not scale to large amounts of
data.

White-box models have been the driving force behind many advances in economics,
medicine, and the natural sciences and allowed researchers to find and understand
the structure in complex and heterogenous data [44, 50]. However, as processes get
more complex, and the amount of available data grows, formulating white-box models
becomes a very difficult task [110].

4

1.3 Structured Models with Gaussian Processes

1.3 Structured Models with Gaussian Processes

White-box and black-boxmodeling approaches serve different purposes in data analysis.
White-box models are used in applications where hypotheses should be tested when
a strong theoretical background is available. Black-box models are most successful
when correlations and associations in large amounts of data should be used to make
predictions about systems where the consequences of mistakes are mild. However,
for many safety-critical applications of machine learning in the physical world, the
situation is different. Complete theoretic models are not available to solve a learning
task, and new insights need to be inferred from potentially large amounts of data.
Simultaneously, models need to make physically plausible predictions and are required
to be interpretable for domain experts.

Take wind power production as an example: To optimize the efficiency of a wind-
turbine, the speed and pitch have to be controlled according to the local wind conditions.
In a wind-farm, turbines are typically equipped with sensors for wind speed and
direction. The goal is to use these sensor data to produce accurate estimates and
forecasts of the wind conditions at every turbine in the farm. For the ideal case of a
homogeneous and very slowly changing wind field, wind conditions can be estimated
using the propagation times computed from geometry, wind speed and direction. In
the real world, however, wind fields are not homogeneous, exhibit global and local
turbulence, and interfere with the turbines and the terrain inside and outside the
farm. This makes it extremely difficult to construct accurate white-box models of wind
propagation in a farm. At the same time, data-driven black-box approaches struggle
due to identifiability issues introduced by the noise of the unpredictable turbulence.
While we cannot formulate analytical models, domain experts do have an intuitive
understanding of the underlying physics of wind propagation. A successful model
needs to combine the white-box and black-box approaches: It needs to reproduce
expectations like slowly changing prevailing wind conditions or gusts that travel
through the system while still being able to infer new knowledge about specific turbine
behavior or the influence of terrain from data. By checking if these expectations are
met, domain experts can build trust in the model’s predictions for novel situations.

In this work, we study how to formulate structured Bayesian models that reproduce
knowledge, are understandable for domain experts, and can still gain new insights from
data. Table 1.1 shows that structured models need to combine the advantages of the
general function approximators from deep learning and the strong and interpretable
structure from Bayesian statistics to fulfill all requirements of safety-critical systems.
There are many approaches in machine learning that combine some but not all of these

5

Chapter 1 Introduction

Table 1.1: The model properties considered as research questions in this thesis.

Deep learning Bayesian statistics

Data-driven insights ✔ ✘
Strong scalability ✔ ✘

Interpretable results ✘ ✔
Trustworthy predictions ✘ ✔

Semantic model-selection ✘ ✘

RQ1

RQ2

RQ3

properties. Rule-based or equation-based systems [54, 71, 82] can combine data-driven
insights with interpretable results, but they struggle with representing uncertainties
and making trustworthy predictions in poorly understood systems. Extensions to deep
learning such as Bayesian neural networks (BNNs) [38, 47] augment neural networks
with priors over weights to yield predictive uncertainties. However, BNNs remain
black-box models with unclear generalization behavior and low interpretability [91].
In this thesis, we embed Gaussian processes (GPs) in hierarchical probabilistic models.
GPs are well-understood non-parametric distributions over functions that allow us to
encode Bayesian assumptions explicitly. The combination of constraints imposed by
hierarchical Bayesian structure and the data-driven insights provided by the embedded
general approximators enables principled and interpretable reasoning about data-driven
insights. The research questions we consider in this thesis are as follows.

RQ1: How can we reduce the model-bias of white-box models and efficiently
learn from data? Starting from a fully white-box model, we explore how to relax a
strong theoretical structure by embedding general function approximators in a hierar-
chy. While conserving interpretability and informative uncertainty quantification, we
use GPs to learn about problem-components we cannot formalize. We discuss how to
formulate inference schemes that scale to large data sets.

RQ2: How can we reduce the data-bias of black-box models and reliably repro-
duce expert expectations? Starting from black-box deep GP models, we study how
to add Bayesian structure to reproduce expert knowledge and factorize uncertainties.
The additional structure allows us to formulate problem-driven constraints for desirable
solutions that yield physically plausible results. We explore how rich internal structure
helps models to generalize to novel situations in an interpretable manner.

6

1.4 Contributions

RQ3: How canwe formalizemodel selection in situationswhere internalmodel
structure and generalization behavior come into focus? As evaluation data
in critical parts of the system is often scarce in physical environments, performance
measures such as the generalization error are not enough to identify desirable structured
models. Simultaneously, the subjective model-selection of white-box approaches is
problematic in domains that are not well-understood. To formalize the description
of desirable structured models, we explore how downstream tasks can be taken into
account for model selection.

1.4 Contributions

This work presents novel Bayesian structuredmodels inspired by industrial applications.
The main contributions to the research questions in Table 1.1 are as follows. They
appeared in a number of peer-reviewed publications and patents we outline below.

RQ1 In Contributions 2, 9 and 10, we formulate a Bayesian interpretation of the data
association problem. We discuss an application of this model to the prediction of
the combustion dynamics of a gas turbine, where the structured model allows us
to distinguish between different dynamical regimes.

RQ2 In Contributions 1, 7 and 8, we formulate a hierarchical Bayesian model for a
nonlinear time-series alignment problem. We show that this model is capable
of representing the complex interactions between turbines in a wind farm, and
discuss how it can be used to derive more efficient controllers for wind-turbines.

RQ3 In Contributions 3 and 4, we apply our data association model to a reinforcement
learning task and show how a semantic decomposition of the dynamics reduces
the data requirements, and produces interpretable solutions. In Contribution 5,
we formulate surrogate models for Bayesian optimization problems that focus on
the informative structure of the objective functions by sacrificing local accuracy
and in Contribution 6, we present an argument for why inference schemes based
on factorizations between layers cannot represent heterogeneous posteriors.

Own Publications

1. Markus Kaiser, Clemens Otte, Thomas A. Runkler, and Carl Henrik Ek. “Bayesian
Alignments of Warped Multi-Output Gaussian Processes”. In: Advances in Neural
Information Processing Systems 31. Ed. by S. Bengio, H. Wallach, H. Larochelle,

7

Chapter 1 Introduction

K. Grauman, N. Cesa-Bianchi, and R. Garnett. Curran Associates, Inc., 2018,
pp. 6995–7004. arXiv: 1710.02766

2. Markus Kaiser, Clemens Otte, Thomas A. Runkler, and Carl Henrik Ek. “Data
Association with Gaussian Processes”. In: Proceedings of the European Conference
on Machine Learning and Knowledge Discovery in Databases (ECML PKDD) 2019.
Sept. 2019. arXiv: 1810.07158

3. Markus Kaiser, Clemens Otte, Thomas A. Runkler, and Carl Henrik Ek. “In-
terpretable Dynamics Models for Data-Efficient Reinforcement Learning”. In:
Computational Intelligence andMachine Learning ESANN 2019 proceedings (2019),
p. 6

4. Markus Kaiser, Clemens Otte, Thomas A. Runkler, and Carl Henrik Ek. “Bayesian
Decomposition of Multi-Modal Dynamical Systems for Reinforcement Learning”.
In: Neurocomputing (Apr. 10, 2020). issn: 0925-2312. doi: 10.1016/j.neucom.
2019.12.132

5. Erik Bodin, Markus Kaiser, Ieva Kazlauskaite, Zhenwen Dai, Neill D. F. Camp-
bell, and Carl Henrik Ek. “Modulating Surrogates for Bayesian Optimization”.
In: Proceedings of the International Conference on Machine Learning (ICML) 119.
Feb. 24, 2020. arXiv: 1906.11152

6. Ivan Ustyuzhaninov, Ieva Kazlauskaite, Markus Kaiser, Erik Bodin, Neill D. F.
Campbell, and Carl Henrik Ek. “Compositional Uncertainty in Deep Gaussian
Processes”. In: Proceedings of the 36th Conference on Uncertainty in Artificial
Intelligence (UAI). Feb. 25, 2020. arXiv: 1909.07698

Patents

7. Per Egedal, Peder Bay Enevoldsen, Alexander Hentschel, Markus Kaiser, Clemens
Otte, Volkmar Sterzing, Steffen Udluft, andMarc ChristianWeber. “Verfahren und
Vorrichtung zur kooperativen Steuerung von Windturbinen eines Windparks”.
European pat. 3517774A1. Siemens Gamesa Renewable Energy As. July 31, 2019

8. Markus Kaiser and Marc Christian Weber. “Verfahren und Vorrichtungen zur
automatischen Ermittlung und/oder Kompensation des Einflusses einer Wirbel-
schleppe auf eine Windkraftanlage”. European pat. 3527817A1. Siemens AG.
Aug. 21, 2019

8

https://arxiv.org/abs/1710.02766
https://arxiv.org/abs/1810.07158
https://doi.org/10.1016/j.neucom.2019.12.132
https://doi.org/10.1016/j.neucom.2019.12.132
https://arxiv.org/abs/1906.11152
https://arxiv.org/abs/1909.07698

1.5 Thesis Outline

9. Markus Michael Geipel, Thomas Hubauer, Markus Kaiser, and Anja von Beunin-
gen. “Transferlernen von Modellen des maschinellen Lernens unter Verwendung
einer Wissensgraphdatenbank”. European pat. 3620997A1. Siemens AG. Mar. 11,
2020

10. Stefan Depeweg, Markus Michael Geipel, Markus Kaiser, and Steffen Udluft.
“Computerimplementiertes Verfahren zum Abschätzen eines technischen Ver-
haltens einer Vorrichtung”. European pat. 3623881A1. Siemens AG. Mar. 18,
2020

1.5 Thesis Outline

The content of this thesis is structured as follows. In Chapter 2, we provide a short
introduction to Bayesian machine learning and Bayesian nonparametrics with a focus
on Gaussian processes (GPs). We discuss the connection between statistical learning
theory and Bayesian inference and their application to hierarchical models. After
introducing GPs, we discuss variational approaches to sparse GPs, their extension to
hierarchical GP models, and efficient inference schemes.

In Chapter 3, we consider the first research question and explore how to formulate
structured hierarchical models using the data association problem as an example.
We separate the data association problem into hierarchical components and derive
an efficient joint inference scheme, resulting in a fully Bayesian model. We show
that this model can factorize multi-modal data into independent processes, providing
explicit models for both the processes and assignment probabilities. Comparisons with
previous models show the additional qualitative model capabilities of the structured
approach and competitive black-box performance. However, experiments also show
that standard measures are not enough to identify desirable models.

In Chapter 4, we consider the second research question and formulate a structured
Bayesian model that reproduces expert knowledge about wind propagation in a wind-
farm. We interpret the problem of modeling the power production of multiple wind-
turbines as a nonlinear alignment problem and derive an efficient inference scheme.
Based on expert knowledge about the underlying latent and turbulent wind field, we
can derive a structured model that enforces a physically plausible dependency structure
betweenmultiple time-series. We discuss how these constraints help solve an otherwise
highly ambiguous learning problem and show that the imposed structure leads to a
rich internal model-structure that experts can interpret.

9

Chapter 1 Introduction

In Chapter 5, we consider the third research question and discuss how to formalize
the subjectiveness introduced via expert knowledge and model ambiguities to evaluate
structured models. We include the task a model will be used to solve into model selec-
tion, which allows us to distinguish between qualitatively different models showing
similar performance metrics. We revisit the data association problem and embed it into
a reinforcement learning problem, where identifying the correct underlying dynamics,
and therefore a desirable model, is critical to finding a successful policy. We show that
semantic hierarchical structure increases data efficiency and allows domain experts to
influence agent behavior through detailed insights into the dynamics of a system.

Chapter 6 concludes the work presented in this thesis and interprets the results in
a broader context by further exploring the properties and evaluation of structured
hierarchical models. In Section 6.1, we present an intuitive argument for why infer-
ence schemes based on factorizations between layers cannot represent heterogeneous
posteriors. In Section 6.2, we argue why models with suboptimal marginal likelihoods
can perform well in hierarchical systems. In Section 6.3, we explore this idea further
and consider how tasks can be included in the inference problem directly. Finally, we
discuss possible further directions for research.

10

Chapter 2

Preliminaries

In Chapter 1, we described the black-box and white-box modeling cultures and intro-
duced the idea of structured models. Structured models share rich internal structure
with white-box models while accepting that some aspects of a learning problem cannot
be modeled in full, thereby introducing black-box model components. In this thesis, we
will use ideas from Bayesian nonparametrics to formulate structured models. In this
chapter, we introduce the theoretical foundations of Bayesian machine learning and
then introduce Gaussian process models, a tool for Bayesian nonparametric function
approximation.

We first provide a short introduction to statistical learning theory and Bayesianmachine
learning. We then introduce Gaussian processes formally, describe how to formulate
and select a GP prior, and how to derive a GP posterior. Since GPs defined on many
observations are computationally expensive, sparse approximations are used in prac-
tice. We discuss one class of sparse approximations based on inducing observations
and introduce approaches based on variational inference. Next, two extensions to
variational inference in hierarchical GP models are introduced that will be used to
formulate more complex hierarchical models containing multiple Gaussian processes
in the next chapters.

2.1 Machine Learning Problems

One of the roots of machine learning (ML) lies in the study of algorithms in theoretical
computer science. An algorithm is a well-defined sequence of computational steps
transforming a set of inputs to a set of outputs. It is a tool for solving a computational
problem, which is defined by an abstract problem of admissible inputs and expected
outputs. An algorithm solves such a problem if, for every possible input, the algorithm
provably yields the correct output.

11

Chapter 2 Preliminaries

−2 −1 0 1 2

−2

0

2

4

6

𝑥

𝑦

(a) Dataset

−2 −1 0 1 2

−2

0

2

4

6

𝑥

𝑦

Linear Interpolation
Lagrange Polynomial

(b) Algorithms for interpolation

Figure 2.1: Computational problems defined on a dataset have a well-defined and unique
solution. This solution can be characterized through algorithms such as linear interpolation
or Lagrange polynomials.

Consider the computational problem of sorting a list of numbers in ascending order.
One possible formulation [29] of the sorting problem is:

Problem 1 (Sorting)
Input: A sequence of 𝑁 integers 𝐈 = (𝑖1, … , 𝑖𝑁)

Output: A reordering of 𝐈 called 𝐎 = (𝑜1, … , 𝑜𝑁) such that 𝑜1 ≤ ⋯ ≤ 𝑜𝑁.

For example, for the input �̂� = (12, 8, 23, 4) the correct output is �̂� = (4, 8, 12, 23). A
concrete input �̂� is called an instance of a problem. Importantly, such an instance
contains all the required information to compute the unique output �̂�. The correctness
of the output can be checked via the formal problem. The various available (correct)
sorting algorithms only differ in which and how many computational steps they take
to arrive at the output, not in the output itself.

Machine learning can be seen as an extension of algorithmics towards problems where
a formal description of a uniquely defined solution does not exist. Instead, problems in
ML are characterized by the observation of finitely many examples or data together
with the objective to derive knowledge about how these examples were generated.
This knowledge can then be used to describe common patterns in the data or generate
new examples that conform to previous observations.

As an example, consider the data shown in Figure 2.1a, a set of 𝑁 pairs of real numbers

12

2.1 Machine Learning Problems

for which we assume that all 𝑥𝑖 are pairwise different. The knowledge about this data
to be uncovered is the functional dependency between the two data dimensions that
were used to generate the data. This is called a regression problem and is strongly
under-specified:

Problem 2 (Regression)
Input: A set of 𝑁 pairs of real numbers 𝒟 = {(𝑥𝑛, 𝑦𝑛)}

𝑁
𝑛=1 ⊆ 𝒳 × 𝒴

Output: The functional dependency 𝑓 ∶ 𝒳 → 𝒴 used to generate the data.

There exist uncountably many functions on the real numbers that explain any finite set
of observed points. The problem is therefore not a computational problem and asking
for a solution or algorithm for this problem is not a well-posed question.

One can, however, derive computational problems from the regression problem by
making assumptions about the nature of the function 𝑓 that characterize a unique
solution. For example, one could ask for the simplest polynomial that explains the
data.

Problem 3 (Lagrange Polynomial)
Input: A set of 𝑁 pairs of real numbers 𝒟 = {(𝑥𝑛, 𝑦𝑛)}

𝑁
𝑛=1 ⊆ 𝒳 × 𝒴

Output: The polynomial of smallest degree for which 𝑓 (𝑥𝑛) = 𝑦𝑛 holds for all
(𝑥𝑛, 𝑦𝑛) ∈ 𝒟.

It can be shown that this is indeed a well-posed computational problem whose unique
solution is the Lagrange polynomial 𝐿 [121] given by the explicit form

𝐿(𝑥) =
𝑁
∑
𝑖=0

𝑦𝑖ℓ𝑖(𝑥), with

ℓ𝑖 =
𝑁
∏
𝑗=0
𝑗≠𝑖

𝑥 − 𝑥𝑗
𝑥𝑖 − 𝑥𝑗

.
(2.1)

Figure 2.1b shows the Lagrange polynomial interpolating the example dataset. The
figure also shows another derived computational problem of linear interpolation. Here,
the function is defined as being piecewise linear between the different data points, thus
also reproducing the data.

Both of these problems and derived algorithms would typically not be identified as
ML approaches, as it can be argued that they do not derive new insights from data.

13

Chapter 2 Preliminaries

−2 −1 0 1 2

−2

0

2

4

6

𝑥

𝑦

LS LAE
Ridge

(a) Linear regression

−2 −1 0 1 2

−2

0

2

4

6

𝑥

𝑦

Linear Quadratic
Cubic

(b) Polynomial regression

Figure 2.2: Problems in machine learning do not have a well-defined solution but require addi-
tional assumptions about the hypothesis space and error function. For the linear regression
problem (left), the squared error (LS), absolute error (LAE) and Ridge error functions lead
to different solutions. Similarly, alternating the hypothesis space between polynomials of
different degrees (right) yields qualitatively different results.

Because of the explicit nature of their algorithms as seen in (2.1), they much more
closely resemble classical algorithms such as sorting algorithms.

A common approach to formulating a problem that lets the data speak for itself is
to formulate more implicit requirements. Instead of describing exactly one possible
function (such as the Lagrange Polynomial), one can choose a broader set of candidate
functions or hypotheses ℋ and then select one of the candidates 𝑓 ∈ ℋ that is optimal
with respect to some measure of performance. For example, a common assumption
about the process used to generate the data is that it separates into two additive
components

𝑦𝑛 = 𝑓 (𝑥𝑛) + 𝜖(𝑥𝑛). (2.2)

The first summand 𝑓 captures the truly informative functional dependency between 𝑥
and 𝑦 that applies for all observations while the second term 𝜖 captures local error or
noise that can be ignored.

A direct consequence of this assumption is that the output of the regression problem 𝑓
need no longer interpolate the data perfectly. At the same time, additional reasoning
is required about how far from the data 𝑓 is allowed to be or, equivalently, about the
shape of 𝜖. One can choose 𝑓 to be a linear function, giving rise to the linear regression
problem.

14

2.2 Statistical Learning

Problem 4 (Linear regression)
Input: A set of 𝑁 pairs of real numbers 𝒟 = {(𝑥𝑛, 𝑦𝑛)}

𝑁
𝑛=1 ⊆ 𝒳 × 𝒴 and an error

function 𝑒 ∶ ℋ × 𝒳 × 𝒴 → ℝ

Output: A function 𝑓 such that

𝑓 ∈ argmin
𝑓 ∈ℋ

𝑒(𝑓 ,𝒟) (2.3)

with ℋ being the set of linear functions.

Figure 2.2a shows the different results of three algorithms with different choices of
error functions 𝑒. With 𝑓 (𝑥) = 𝐖𝑥 + 𝑏 those are

Squared error: 𝑒(𝑓 ,𝒟) = ∑𝑁
𝑛=1(𝑦𝑛 − 𝑓 (𝑥𝑛))2

Absolute error: 𝑒(𝑓 ,𝒟) = ∑𝑁
𝑛=1|𝑦𝑛 − 𝑓 (𝑥𝑛)|

Ridge: 𝑒(𝑓 ,𝒟) = ∑𝑁
𝑛=1(𝑦𝑛 − 𝑓 (𝑥𝑛))2 − ‖𝐖‖2 − 𝑏2.

Altering the set of hypotheses ℋ between linear, quadratic and cubic polynomials
together with the squared error function results in the functions shown in Figure 2.2b.

It is important to note that none of these proposed algorithms and plotted functions is
objectively the correct solution to the regression problem. None of them is equal to the
function that was used to generate the data, and even if it was, there would be no way
to tell. A core property of machine learning problems is that what characterizes the
correct solution is an inherently subjective question. This subjectiveness is represented
in multiple choices:

1. The assumed structure underlying the data.

2. The space of hypotheses for valid solutions.

3. The algorithm used to select from these hypotheses.

In the following, statistical learning and Bayesian machine learning are introduced as
tools to formalize these choices and establish a mathematical framework.

15

Chapter 2 Preliminaries

p(𝐳) 𝒮

ℱ

S

F
A

Figure 2.3: Statistical learning characterizesmachine learning through a latent data distribution
p(𝐳). The task is to learn about a functional of interest 𝐹[p(𝐳)] = 𝑓 ∈ ℱ based on a set
of observations 𝑆[p(𝐳)] ∈ 𝒮. A machine learning algorithm 𝐴 ∶ 𝒮 → ℱ is successful if it
recovers 𝑓 such that 𝐴 ∘ 𝑆 ≃ 𝐹.

2.2 Statistical Learning

The objective of machine learning is to derive knowledge about a process generating
the data from a limited set of observations. Knowledge is represented as a model that
both explains existing observations and can generalize to new data points. Statistical
learning theory [48, 117] offers a set of tools to reason about generalization and to
formulate what it means for a model to be good. This section presents an interpretation
of statistical learning theory similar to the definition of probabilistic numerics in [26,
83].

In the following, we denote the space of probability measures over a set 𝒵 as 𝒫𝒵.
We adopt an overloaded notation common in machine learning where p(𝐳) can both
refer to a probability measure and the evaluation of the same probability measure on a
specific point 𝐳 ∈ 𝒵 depending on the context. Similarly, 𝐳 can both refer to a random
variable with the distribution p(𝐳) and an element 𝐳 ∈ 𝒵. That is, 𝐤 ∼ p(𝐳) denotes
that the distribution of the random variable 𝐤 is p(𝐳) and 𝔼[𝐳] = ∫ 𝐳 p(𝐳) d𝐳 denotes the
expected value of the random variable 𝐳 under the distribution p(𝐳). In less ambiguous
notation one would assume a random variable 𝐙 with distribution p(𝐙) and denote the
expected value as 𝔼[𝐙] = ∫𝒵 𝑧 p(𝐙 = 𝑧) d𝑧. Here, 𝐙 and 𝑧 are identified with each other
as 𝐳.

Assume an unknown data-generating distribution p(𝐳) ∈ 𝒫𝒵 over a known space
of observations 𝒵. The task in a machine learning problem is to infer properties
of this distribution given a set of observations 𝒟 ∈ 𝒮 obtained via some sampling
operator 𝑆 ∶ 𝒫𝒵 → 𝒮. A common choice of 𝑆 is a draw of 𝑁 independent points
𝒟 = {𝐳1, … , 𝐳𝑁 | 𝐳𝑖 ∼ p(𝐳)} ⊆ 𝒵 with 𝒮 = 𝒵𝑁. Other choices include 𝑆 into the

16

2.2 Statistical Learning

learning problem such as in active learning [81] or reinforcement learning [111] settings.
Depending on the machine learning problem, the task might not be to identify p(𝐳) as a
whole but instead identify some functional 𝑓 ∈ ℱ obtained via the functional operator
𝐹 ∶ 𝒫𝒵 → ℱ. This formulation encompasses a large number of different machine
learning problems via different choices for the spaces and operators. We give a few
examples here.

Problem 5 (Common machine learning problems)
Parameter estimation In a simple case, the functional 𝑓 can be chosen to be some

constant statistic of p(𝐳) such as the mean

𝐹mean[p(𝐳)] = ∫ 𝐳 p(𝐳) d𝐳, (2.4)

with ℱ = 𝒵.

Regression Alternatively, assuming that 𝒵 = 𝒳 × 𝒴 separates into tuples of
inputs 𝒳 and continuous outputs 𝒴 and choosing

𝐹reg[p(𝐱, 𝐲)](𝐱∗) = p(𝐲∗ | 𝐱∗) (2.5)

with ℱ = 𝒳 → 𝒫𝒴 gives rise to the regression problem discussed in Sec-
tion 2.1.

Classification Classification is closely related to regression and assumes the same
separation𝒵 = 𝒳 ×𝒴. In contrast to regression,𝒴 is assumed to be discrete,
often without a known order.

Dimensionality Reduction In the dimensionality reduction or manifold learning
problem, the assumption is that the support of the data distribution p(𝐳) is a
low dimensional manifold in𝒵. The task is to find a distribution p(𝐦) ∈ 𝒫ℳ
and a mapping 𝑓 ∶ ℳ → 𝒵 with

𝐹dim[p(𝐳)] = (p(𝐦), 𝑓), such that
𝑓 (p(𝐦)) = p(𝐳)

(2.6)

and ℱ = 𝒫ℳ ×(ℳ → 𝒵) and a space ℳ of lower dimensionality than 𝒵. If
ℳ = 𝒵 this problem is called density estimation.

A machine learning Algorithm 𝐴 ∶ 𝒮 → ℱ is a function mapping from the space of
samples to the space of functionals, thereby recovering structure from data. Such an
algorithm is successful if it recovers the correct functional 𝑓 ∈ ℱ given observations 𝒟.

17

Chapter 2 Preliminaries

Figure 2.3 shows the introduced components in a directed diagram. An algorithm is
successful if this diagram (approximately) commutes such that 𝐴 ∘ 𝑆 ≃ 𝐹. Similarly, a
model 𝑓𝐴 ∈ ℱ can be considered good if it is similar to the true functional 𝑓.

The similarity of two functionals can be measured via a distance measure in ℱ. In
the case of learning about global properties such as the mean of p(𝐳), a possible
choice is the standard Euclidean norm. Considering the regression case, where ℱ is a
function space mapping inputs to (possibly distributions over) outputs, the effects of
choosing a distance measure is more subtle. While it is reasonable to require pointwise
similarity, the choice of which points to evaluate allows us to define what we mean by
generalization: Besides explaining the observations in 𝒟, a good model should yield
correct predictions for the complete data distribution p(𝐳) = p(𝐱, 𝐲). The concept of
risk minimization is based on this observation.

Definition 6 (Risk minimization in the regression problem)
Given a loss function ℓ ∶ 𝒴 ×𝒴 → ℝ and a data distribution p(𝐱, 𝐲) for a regression
problem, the risk relative to ℓ is defined as

Rℓ ∶ {
ℱ → ℝ

𝑓𝐴 ↦ ∫ℓ(𝐲, 𝑓𝐴(𝐱)) p(𝐱, 𝐲) d𝐱 d𝐲.
(2.7)

Risk minimization for a hypothesis space ℋ ⊆ ℱ selects a hypothesis ̂𝑓𝐴 with the
smallest possible risk

̂𝑓𝐴 ∈ argmin
𝑓𝐴∈ℋ

Rℓ(𝑓𝐴). (2.8)

A model generalizes with respect to a loss function ℓ if it does not only explain the
specific dataset 𝒟 well but all possible choices of 𝒟 via 𝑆. While risk minimization
is a theoretical tool to define generalization, it does not immediately yield a learning
algorithm. Since it includes an expectation over the unknown data distribution, the
risk-term cannot be evaluated directly. Instead, calculating aMonte-Carlo estimate over
the training data 𝒟 gives rise to a fundamental machine learning algorithm, empirical
risk minimization.

Definition 7 (Empirical risk minimization in the regression problem)
Given a loss function ℓ ∶ 𝒴 ×𝒴 → ℝ and a data distribution p(𝐱, 𝐲) for a regression

18

2.2 Statistical Learning

problem, the empirical risk relative to ℓ is defined as

Remp
ℓ ∶

⎧

⎨
⎩

ℱ → ℝ

𝑓𝐴 ↦ 1
𝑁

𝑁
∑
𝑖=1

ℓ(𝐲, 𝑓𝐴(𝐳))
(2.9)

Empirical risk minimization for a hypothesis space ℋ ⊆ ℱ selects a hypothesis ̂𝑓𝐴
with smallest possible risk

̂𝑓𝐴 ∈ argmin
𝑓𝐴∈ℋ

Remp
ℓ (𝑓𝐴). (2.10)

Intuitively, risk minimization describes the global properties of 𝑓𝐴 which get approxi-
mated by a number of local properties at the observations in empirical riskminimization.
The two questions

1. under which conditions Remp converges to R for 𝑁 → ∞ and

2. if so, what the convergence rates are

underpin (statistical) learning theory [119]. It is safe to assume that for small 𝑁, Remp

can significantly underestimate the true risk as the error on parts of the data distribution
is not considered at all. This problem is called overfitting to the available training data,
an example of which can arguably be seen in Figure 2.1b.

In practice, if the collection of sufficient data is not possible, overfitting has to be
avoided via problem-dependent choices for ℓ and ℋ. Additionally, the empirical risk
minimization algorithm is often extended to regularizing loss functions of the form
ℓ′ ∶ ℱ × 𝒴 × 𝒴 → ℝ which depend on the structure of the candidate as well as its
predictions. The Ridge error function shown in Figure 2.2a is an example of extending
the least-squares error function with a preference for parameters with small absolute
value. Regularization [83] adds back a global component to empirical risk minimization
and has a close relation to the choice of hypothesis space ℋ. The constraint that
𝑓𝐴 ∈ ℋ ⊆ ℱ can be thought of as a binary regularization term that adds infinite loss
to the set ℱ ⧵ℋ. Conversely, continuous regularization terms formulate softer and
less rigorous preferences within ℋ, for example for structurally simpler solutions [13,
112].

For complex loss functions and hypothesis spaces, finding the true minimum ̂𝑓𝐴 is
often unfeasible. Another common extension is to modify the optimization scheme to
increase the likelihood of selecting a favorable solution. Examples include the usage of

19

Chapter 2 Preliminaries

test sets or validations sets [13], cross validation [108], early stopping [80] or specific
parameter choices [34].

It is often possible to reformulate choices in loss functions as changes in the optimization
scheme or constrain a more general hypothesis space with stricter regularization. It
is not clear how a machine learning algorithm should be formulated from a formal
perspective. However, problem-dependent adjustments to learning algorithms are
generally informed by the knowledge provided by domain-experts about the process
that generated the data. An additional dimension is therefore given by the need to
communicate assumptions and effects of choices with stakeholders that do not have
a deep understanding of the field. If a learning algorithm should be interpretable
and understandable, assumptions should be explicit, and optimization schemes should
be simple. The next section introduces Bayesian machine learning as a rigorous
formal framework that builds on statistical learning theory and enables the principled
formulation of complex hypothesis spaces.

2.3 Bayesian Machine Learning

The central modeling assumption of statistical learning theory is the unknown data
distribution p(𝐳). Based on a limited number of observations, the task is to learn amodel
of either the complete distribution or some functional 𝐹[p(𝐳)]. Instead of selecting one
solution (for example, using some regularization scheme), Bayesian approaches accept
the inevitability of uncertainty due to the underspecified ML problem and represent
it explicitly. Following the definition of functionals 𝐹, a Bayesian model is often
formulated through independence assumptions in the data distribution. Independence
assumptions induce a factorization of the data distribution. Structural constraints can
then be put on the different factors to encode expert knowledge.

Since the available data is not sufficient to identify the unique correct solution, the goal
of Bayesian machine learning is to infer a distribution of plausible solutions weighed
by their likelihood given the data instead. The posterior distribution of plausible
models is a combination of the prior assumptions about the underlying structure and
their capability of explaining the observations. This section introduces probabilistic
generative models as a natural consequence of the assumptions in statistical learning
theory. Probabilistic generativemodels form a principledway to formulate interpretable
hypothesis spaces with carefully chosen assumptions. With Bayes’ rule, a structurally
simple and formally consistent learning algorithm can be formulated to infer knowledge
from data.

20

2.3 Bayesian Machine Learning

Directed Graphical Models

Any joint probability distribution p(𝐚, 𝐜, 𝐞) can be formulated as a product of partial
distributions via the chain rule of probability [81] as

p(𝐚, 𝐜, 𝐞) = p(𝐚 |𝐜, 𝐞) p(𝐜 |𝐞) p(𝐞)
= p(𝐞 |𝐚, 𝐜) p(𝐚 |𝐜) p(𝐜)
= …

(2.11)

The chain rule is symmetric in the sense that the order of chaining random vari-
ables does not matter. All possible interdependencies between random variables are
represented in the expansion of conditional probabilities.

A factorization along the chain rule does not impose any structure on the underlying
distribution. The first step in Bayesian modeling is to impose such structure by as-
suming conditional independence between variables. Directed graphical models are a
readable visualization of such independence assumptions. A directed graphical model
is a directed graph where every random variable is a node 𝐚 and an edge 𝐚 𝐜
denotes a dependency of 𝐜 on 𝐚. In contrast to the factorization according to the chain
rule, the graphical model below encodes the assumption that 𝐞 is independent of 𝐚
given 𝐜.

𝐚

𝐜

𝐞

p(𝐚, 𝐜, 𝐞) = {
p(𝐚)
⋅ p(𝐜 |𝐚)
⋅ p(𝐞 |𝐜)

(2.12)

More formally, the factorization belonging to a graphical model with nodes 𝐚1, … , 𝐚𝑁
is given by

p(𝐚1, … , 𝐚𝑁) =
𝑁
∏
𝑛=1

p(𝐚𝑛 |parents(𝐚𝑛)) (2.13)

21

Chapter 2 Preliminaries

with parents(𝐚𝑛) denoting the set of nodes with an edge towards 𝐚𝑛. A cycle 𝐚 𝐜
denotes that the variables 𝐚 and 𝐜 need to be considered jointly as p(𝐚, 𝐜). Graphical
models have been studied in great detail. We refer to [13, 35, 81, 117] for additional
information.

Generative Models

In the algorithmic view of machine learning problems formulated in Section 2.1, the
observational data is used to formulate an error function to select a model from a set
of candidates without the notion of explaining said data. To formulate what it means
to generalize, statistical learning theory in Section 2.2 bases the learning problem on
an unknown or latent data distribution, with the observational data being just one
of many possible samples from that distribution. A generative model captures this
sampling process and formulates an algorithm to generate arbitrary data sets from the
data distribution p(𝐳). A generative model is successful if the observational data set is
a likely draw from the model. Using the regression problem as an example, we will
now introduce the building blocks of a Bayesian generative model.

The functional of interest 𝐹reg = p(𝐲 |𝐱) for the regression problem formulated in (2.5)
is the conditional probability of the output 𝐲 given the input 𝐱 for the data distribution
p(𝐳) = p(𝐱, 𝐲). Formulating a generative model starts with the factorization of the data
distribution such that this conditional is made explicit:

𝐱

𝐲

p(𝐱, 𝐲) = {
p(𝐱)
⋅ p(𝐲 |𝐱)

(2.14)

Here, the color of the nodes 𝐱 and 𝐲 indicates that both nodes are part of the data
distribution and are directly observed in a data set. Wewill introduce other nodes below.
Closed forms for both p(𝐱) and p(𝐲 |𝐱) would fully characterize the data distribution.
To solve the regression problem, however, only the second term is required.

In the notation typically employed in machine learning, the variables 𝐱 and 𝐲 in the
graphical model denote both the factorization of the generative process as well as
the functional dependencies between concrete realizations of 𝐱 and 𝐲. Assuming a
regression problem over the reals 𝒳 = 𝒴 = ℝ, the functional p(𝐲 |𝐱) is an infinite-
dimensional object. To simplify reasoning about this object, we will reason about

22

2.3 Bayesian Machine Learning

finitely many realizations of this process, the pairs (𝐱1, 𝐲1), … , (𝐱𝑁, 𝐲𝑁). This formula-
tion describes both the model search and prediction steps: If the 𝑁 pairs are all part of
some data set 𝒟, model-search can be formulated as finding a closed-form for p(𝐲𝑛 | 𝐱𝑛)
that explains the observations well. For prediction, the graphical model is typically
augmented with a new pair (𝐱∗, 𝐲∗) ∉ 𝒟, an arbitrary but previously unseen point.
Making a prediction is equivalent to evaluating the closed form p(𝐲∗ | 𝐱∗). To simplify
notation, we identify 𝐱 = (𝐱1, … , 𝐱𝑁) and 𝐲 = (𝐲1, … , 𝐲𝑁). Using this formulation, the
graphical model is reformulated as

𝐱1

𝐲1

𝐱2

𝐲2

⋯ p(𝐱, 𝐲) = {
p(𝐱1, 𝐱2)
⋅ p(𝐲1, 𝐲2 | 𝐱1, 𝐱2).

(2.15)

Similar to the assumption of independent draws for a data set 𝒟 in statistical learning
theory, the inputs 𝐱1, 𝐱2, … to a generative regression model are typically assumed
to be independent. The outputs 𝐲1, 𝐲2, … are not independent however because they
have been generated using the same functional dependency 𝑓 we wish to model.

In the next step, we expand the model to reflect the fact that the 𝐲𝑁 are conditionally
independent given this functional dependency 𝑓. The rule of total probability [13]
states that for any random variable 𝐟, it holds that

p(𝐲 |𝐱) = ∫ p(𝐲 | 𝐟, 𝐱) p(𝐟) d𝐟. (2.16)

This rule allows us to add arbitrary nodes to the graphical model and recover the original
distribution via marginalization, the calculation of the expectation with respect to
the variable that should be removed. Introducing a new variable is helpful because it
allows us to formulate independence assumptions explicitly. To achieve conditional
independence of the 𝐲𝑛, we add variables 𝐟𝑛 which represent the function values
𝐟𝑛 = 𝑓 (𝐱𝑛). Since the input 𝐱𝑛 is no longer relevant once this function value is known,

23

Chapter 2 Preliminaries

we assume that p(𝐲𝑛 | 𝐟𝑛, 𝐱𝑛) = p(𝐲𝑛 | 𝐟𝑛). This leads to the new graphical model

𝐱1

𝐟1

𝐲1

𝐱2

𝐟2

𝐲2

⋯ p(𝐱, 𝐲) =

⎧
⎪

⎨
⎪
⎩

p(𝐱1, 𝐱2)

⋅ ∫ p(𝐟1, 𝐟2 | 𝐱1, 𝐱2)

⋅ p(𝐲1 | 𝐟1) p(𝐲2 | 𝐟2)
⋅ d𝐟1 d𝐟2

(2.17)

with the additional latent nodes 𝐟 which are never directly observed. The function
values are (usually) assumed to not be directly observed due to the additive noise
assumption in (2.2), which states that only a noisy version 𝐲𝑛 = 𝑓 (𝐱𝑛) + 𝜖𝑛 of the true
functional dependency is observed to motivate regularization terms. In the graphical
model above, both terms are represented via

p(𝐟𝑛 | 𝐱𝑛): The true functional dependency 𝑓, the functional of interest.

p(𝐲𝑛 | 𝐟𝑛): The independent noise term 𝜖.

In this model, the noise term contains all part of the generative process for 𝐲𝑛 which
cannot be explained by 𝐱𝑛 and is assumed to be fully independent given 𝐟𝑛.

The graphical model now contains a chain of nodes 𝐱𝑛, 𝐟𝑛, 𝐲𝑛 that is repeated for every
data point. This is a common pattern for generative models. While the functional of
interest 𝑓 changes depending on the position in the input space 𝐱, the structure of
the generative process is assumed to be the same for all observations. To explicitly

24

2.3 Bayesian Machine Learning

represent this repetition, we introduce plate notation:

𝑁

𝐱𝑛

𝐟𝑛

𝐲𝑛

p(𝐱, 𝐲) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

p(𝐱1, … , 𝐱𝑁)

⋅ ∫ p(𝐟1, … , 𝐟𝑁 | 𝐱1, … , 𝐱𝑁)

⋅
𝑁
∏
𝑛=1

p(𝐲𝑛 | 𝐟𝑛)

⋅ d𝐟1… d𝐟𝑁

(2.18)

Within the plate, all nodes indexed with 𝑛 are repeated 𝑁 times. The loop on 𝐟𝑛 denotes
that all 𝐟𝑛 are dependent on each other. Having separated the functional of interest from
the noise term, the next step is to formulate a representation of p(𝐟1, … , 𝐟𝑁 | 𝐱1, … , 𝐱𝑁).
The choice of this distribution over functions is informed by two challenges. First, the
support of the distribution can be restricted to a specific class of functions to shrink
the hypothesis space. And second, for a model to be the result of an algorithm, it needs
to be represented via finitely many parameters.

There exist two paths to achieving a finite representation:

Non-parametric: The functional dependency is represented implicitly using the ex-
isting observations 𝒟. Examples include nearest neighbor models,
Gaussian processes or polynomial splines.

Parametric: The functional dependency is represented explicitly using a specific
class of functions with parameters 𝜽. Examples include neural
networks, linear regression or polynomial regression.

The model in (2.18) is non-parametric because it does not contain any parameters
besides the 𝑁 pairs (𝐱𝑛, 𝐲𝑛). Because the functional 𝑓 is implicit, all 𝐟𝑛 inform each
other.

If 𝑓 is represented completely and explicitly via a set of parameters 𝜽 in a parametric
model, the 𝐟𝑛 are independent given 𝜽. If this conditional independence

p(𝐟𝑛 | 𝜽 , {𝐟𝑚 |𝑚 ∈ {1, … , 𝑁 }, 𝑚 ≠ 𝑛}) = p(𝐟𝑛 | 𝜽) (2.19)

25

Chapter 2 Preliminaries

holds, 𝜽 is called a sufficient statistic for the functional 𝑓. In the parametric graphical
model

𝑁

𝐱𝑛

𝐟𝑛𝜽

𝐲𝑛

p(𝐱, 𝐲) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

p(𝐱)

⋅ ∫
𝑁
∏
𝑛=1

p(𝐟𝑛 | 𝐱𝑛, 𝜽)

⋅ p(𝜽) d𝜽

⋅
𝑁
∏
𝑛=1

p(𝐲𝑛 | 𝐟𝑛)

⋅ d𝐟1… d𝐟𝑁

(2.20)

the joint distribution of the 𝐟𝑛 factorizes given the parameters 𝜽 and the loop no longer
exists. Taking linear regression as an example, we assume the functional to be of
the shape 𝑓 (𝑥) = 𝐖𝑥 + 𝐛 and choose the parameters 𝜽 = (𝐖, 𝐛). The functional
dependency in the graphical model is then given by

p(𝐟𝑛 | 𝐱𝑛, 𝜽) = 𝛿(𝐖𝐱𝑛 + 𝐛), (2.21)

where 𝛿(⋅) denotes the Dirac delta distribution [81]. Since 𝜽 is a sufficient statistic,
other observations are not required to evaluate the linear function. Even though we
made the strong structural assumption about the linearity of the function resulting
in a delta distribution, the marginalization of p(𝜽) can still lead to more complicated
p(𝐲 |𝐱) distributions.

Additional latent structure can be introduced to formulate more complex generative
models. Assume, for example, that the functional of interest is known to have the

26

2.3 Bayesian Machine Learning

shape 𝑓 (𝑥) = ℎ(𝑘(𝑥), 𝑔(𝑥)). The corresponding graphical model

𝑁

𝐱𝑛

𝐤𝑛 𝐠𝑛𝜽

𝐡𝑛

𝐲𝑛

p(𝐱, 𝐲) =

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

p(𝐱)

⋅ ∫
𝑁
∏
𝑛=1

p(𝐤𝑛 | 𝐱𝑛, 𝜽)

⋅
𝑁
∏
𝑛=1

p(𝐠𝑛 | 𝐱𝑛, 𝜽)

⋅
𝑁
∏
𝑛=1

p(𝐡𝑛 | 𝐤𝑛, 𝐠𝑛, 𝜽)

⋅ p(𝜽) d𝜽

⋅
𝑁
∏
𝑛=1

p(𝐲𝑛 | 𝐤𝑛, 𝐠𝑛, 𝐡𝑛)

⋅ d{𝐤𝑛, 𝐠𝑛, 𝐡𝑛}
𝑁
𝑛=1

(2.22)

contains separate nodes for the different functions. By constructing a hypothesis space
as a combination of multiple sub-hypothesis spaces, generative models can represent
detailed assumptions while remaining formally principled through marginalization.
Having formulated structural assumptions about how a data set has been generated,
the next step is interpret these assumptions in a statistical learning context and connect
them with data.

Bayesian Inference

The generative model for linear regression formulated in (2.20) formulates a factoriza-
tion of the unknown data distribution p(𝐱, 𝐲). By introducing the parameters 𝜽 = (𝐖, 𝐛)
which are sufficient statistics for the functional dependency between 𝐱 and 𝐲 under our
assumptions, learning about the regression functional 𝑓 has been reduced to learning
about finitely many parameters. In other words, the formulation of a generative model
yields a formal description of what we mean by linear regression in a statistical learning
context. The next step is to derive a learning algorithm that connects this model to
observations.

In Section 2.2, a good solution to a learning problem was characterized with the
risk minimization algorithm, which demands that any data that could be observed
form the data distribution would be well-explained by the solution. In the context of

27

Chapter 2 Preliminaries

generative models, we can formulate the same idea by demanding that sampling from
the true data distribution or from the generative model leads to the same data sets.
Or equivalently, that samples drawn from the data distribution have high probability
under the generative model and vice versa. Since we do not have access to the full data
distribution, we use the available observations as an empirical estimate again.

To make statements about the interaction of the parameters 𝜽 and the observations
𝒟 = {(𝐱𝑛, 𝐲𝑛)}

𝑁
𝑛=1, we consider their joint probability distribution p(𝜽,𝒟). Using the

chain rule, this distribution can be written as a product

p(𝜽,𝒟) = p(𝒟|𝜽) p(𝜽), (2.23)

whose terms are called the likelihood p(𝒟|𝜽) and the prior p(𝜽). The structural assump-
tions formulated via the generative model allow us to directly evaluate the likelihood
p(𝒟|𝜽) = p(𝐱, 𝐲 |𝜽). The prior p(𝜽) is a distribution over all possible parameters 𝜽 and
is part of the joint formulated in the generative model. Applying the chain rule on the
joint again yields the posterior

p(𝜽 |𝒟) =
p(𝒟|𝜽) p(𝜽)

p(𝒟)
, (2.24)

where p(𝒟) = ∫ p(𝒟|𝜽) p(𝜽) d𝜽 is a combination of the likelihood and and prior terms.
Because all terms on the right-hand-side are known, this posterior can be evaluated,
yielding a combination of modeling assumptions and observations. If a closed-form
solution cannot be found, Bayesian inference is often implemented using approximation
techniques such as sampling or variational approaches [13].

Having found a posterior p(̂𝜽) = p(𝜽 |𝒟), Bayesian predictions for previously unseen
points can be made by replacing p(𝜽)with p(̂𝜽) in the graphical model. In the regression
case, this predictive posterior is given by

p(𝐲∗ | 𝐱∗) = ∫ p(𝐲∗ | 𝐟∗) p(𝐟∗ | 𝐱∗, ̂𝜽) p(̂𝜽) d𝐟∗ d ̂𝜽 . (2.25)

Because Bayesian linear regression is a parametric model and we assumed that 𝜽 is a
sufficient statistic for 𝐟, predictions can be made independently of the training data in
this case.

In Section 2.2 we argued that considering finitely many observations instead of the full
data distribution can lead to overfitting. An overfitted model explains the observed
data well but might have a high risk for unseen parts of the data distribution. The
empirical risk minimization learning algorithm can be subject to overfitting because

28

2.3 Bayesian Machine Learning

−2 −1 0 1 2

−2

0

2

4

6

𝑥

𝑦

(a) Uncertain prior 𝐖,𝐛 ∼ 𝒩 (0, 52)

−2 −1 0 1 2

−2

0

2

4

6

𝑥

𝑦

(b) Certain prior 𝐖,𝐛 ∼ 𝒩 (1, 12)

Figure 2.4: Two predictive posteriors for a Bayesian linear regression on the same data.
Different choices for prior distributions lead to different predictive uncertainties. Which
posterior to use is problem-dependent and a subjective choice.

the algorithm selects a single model from the hypothesis space that explains the data
well. Bayesian inference is fundamentally different: A Bayesian posterior p(𝑓 |𝒟)
for a functional of interest 𝑓 is a distribution over hypotheses rather than one single
candidate. This distribution can be thought of as a subset of hypotheses weighed
by how well the different hypotheses explain the data. Instead of selecting a good
candidate, a Bayesian inference step can be thought of as removing all bad candidates
from a hypothesis space. As a consequence, a Bayesian posterior contains both the
models in the original hypothesis space that overfit to the observations as well as the
more desirable models with similar data likelihoods. Their relative weights in the
posterior are dependent on the prior assumptions formulated via the structure of the
generative model and the prior p(𝜽).

Bayesian Model Selection

Statements about Bayesian models are made in terms of probabilities, including pre-
dictive posteriors for new inputs p(𝐲∗ | 𝐱∗, 𝒟) in a regression problem or a posterior
distributions p(𝜽 |𝒟) for a parameter. This distribution of predictions or parameters
can be interpreted as uncertainty due to insufficient knowledge about the generative
process. A Bayesian posterior is derived as the combination of the prior knowledge
and the data. Since a Bayesian posterior is the combination of the data likelihood and

29

Chapter 2 Preliminaries

the prior assumptions, the posterior uncertainties are not objective but depend on the
prior assumptions.

Figure 2.4 shows two predictive posteriors for a Bayesian linear regression on the data
introduced in Figure 2.1a using the graphical model in (2.20). Both models of linear
regression are based on the same observations but differ in the prior assumptions
about 𝜽 = (𝐖, 𝐛). Choosing a broad prior 𝐖,𝐛 ∼ 𝒩 (0, 52) results in higher posterior
uncertainties about both 𝐖 and 𝐛 than choosing a more narrow prior 𝐖,𝐛 ∼ 𝒩 (1, 12).
Samples drawn from the posterior show why this is the case: A broader prior contains
linear functions with steep slopes that could explain the data but are never considered
by the narrow prior. Not considering these functions might be the desired behavior if
implied by the expert knowledge. This situation of having to choose a model from a
set of plausible models is a model selection problem.

In principle, model selection is not necessary in Bayesian machine learning. Because
the result of inference is a distribution over models weighed by their plausibility, model
selection is already included in a Bayesian posterior. However, this is only true for
model components that receive a Bayesian treatment by calculating a posterior. No
prior is typically placed on the structure of the graphical model itself or the parametric
forms of its components, such as the linearity assumption in Bayesian linear regression.
For fully Bayesian treatments, priors would also have to be placed on priors, forming
hyper-priors. Because such a fully Bayesian treatment is generally computationally
intractable, certain parameters or structural assumptions are typically fixed to one
specific instantiation, a point estimate. Introducing point estimates also introduces a
model selection problem.

Many strategies exist for Bayesian model selection [5, 35, 81] which are not discussed in
detail here. Most strategies are related to the ideas of empirical risk minimization and
consider a performance measure on the observed data. Given two hypotheses 𝐻1 and
𝐻2, it is common to compare the marginal likelihoods p(𝒟|𝐻1) and p(𝒟|𝐻2) where
p(𝒟|𝐻) = ∏𝑁

𝑛=1 p(𝐲𝑛 | 𝐱𝑛, 𝐻). Choosing the hypothesis 𝐻𝑖 with a higher marginal
likelihood is called a maximum likelihood estimation. Observing that

p(𝐻1 |𝒟)
p(𝐻2 |𝒟)

=
p(𝒟|𝐻1)
p(𝒟|𝐻2)

p(𝐻1)
p(𝐻2)

, (2.26)

a common extension to maximum likelihood estimation is to also consider how well
the hypotheses conform to the prior assumption through the prior odds p(𝐻1)/p(𝐻2).

While strategies based on marginal likelihoods often work well in practice, they are
limited in scope. Since marginal distributions are considered, models are not evaluated

30

2.4 Gaussian Processes

with respect to the latent components in the generative model, such as the shape of p(𝐟)
in Bayesian linear regression. Selecting models using maximum likelihood approaches
enforces good predictive uncertainties around the observations in 𝒟. No requirements
are enforced concerning uncertainties away from the data, the shape of the individual
samples drawn from the model or the uncertainties in the latent part of the generative
model.

2.4 Gaussian Processes

Bayesian graphical models encode structural assumptions about a machine learning
problem. The central assumption in the regression problem is a latent function 𝑓 that
maps inputs to outputs. In the Bayesian linear regression example, a posterior over
linear functions could be derived by calculating a posterior over parameters instead,
since every parameter explicitly represents a linear function. A Gaussian process (GP)
is a non-parametric model that directly represents a distribution over functions [10,
87]. Instead of formulating an explicit parameterized formula, a GP prior encodes more
general assumptions about 𝑓 such as differentiability or variability. A GP posterior
can be calculated analytically, making Bayesian inference over GPs computationally
feasible.

Gaussian processes are a generalization of the Gaussian distribution to function spaces.
A multivariate Gaussian 𝐱 ∼ 𝒩 (𝝁, 𝚺) describes a distribution over the finitely many
elements in the vector 𝐱. Every such element 𝐱𝑖 is normally distributed according to
𝐱𝑖 ∼ 𝒩 (𝜇𝑖, Σ𝑖𝑖) and every linear combination of the 𝐱𝑖 is also normally distributed [6].
For every pair (𝐱𝑖, 𝐱𝑗), their covariance is given by cov[𝐱𝑖, 𝐱𝑗] = 𝚺𝑖𝑗. The probability
density of 𝐱 is given by

p(𝐱) = 𝒩 (𝐱 |𝝁, 𝚺)

= 1

√det(2𝜋𝚺)
exp(−1

2
(𝐱 − 𝝁)T𝚺−1(𝐱 − 𝝁)). (2.27)

Multivariate Gaussians have several convenient closure properties [6]. Assume a split
𝐱 = (𝐱1, 𝐱2) into two partial vectors and denote

(𝐱1𝐱2
) ∼ 𝒩((𝝁1𝝁2

) , (𝚺11 𝚺12
𝚺21 𝚺22

)) (2.28)

31

Chapter 2 Preliminaries

the same split of the mean vector 𝝁 and covariance matrix 𝚺. Then, the marginal
distribution of 𝐱1 is also a Gaussian with

p(𝐱1) = ∫ p(𝐱1, 𝐱2) d𝐱2

= 𝒩 (𝝁1, 𝚺1)
(2.29)

and the conditional of 𝐱1 given 𝐱2 is a Gaussian as well with

p(𝐱1 | 𝐱2) =
p(𝐱1, 𝐱2)
p(𝐱2)

= 𝒩 (�̂�, �̂�), and

�̂� = 𝝁1 + 𝚺12𝚺
−1
22(𝐱2 − 𝝁2)

�̂� = 𝚺11 − 𝚺21𝚺
−1
22𝚺12

= 𝚺11 − 𝚺T
12𝚺

−1
22𝚺12.

(2.30)

Modeling functions over infinite sets requires an infinite number of random variables,
one for every function value. Such structure of a number of possibly dependent random
variables mapping from the same probability space to the same value space is called a
stochastic process and is represented via a function.

Definition 8 (Stochastic Process)
Given a probability space (Ω,ℱ , 𝑃), an index set 𝑇 and a measurable space 𝑌, a
stochastic process 𝐗 is a function

𝐗∶ {
𝑇 × Ω → 𝑌
(𝑡, 𝜔) ↦ 𝐗𝑡(𝜔)

(2.31)

mapping indices 𝑡 to 𝑌-valued random-variables. For a fixed 𝜔 ∈ Ω, 𝐗(⋅, 𝜔) is called
a trajectory of the process [6].

The index set of a stochastic process can be an arbitrary set. It is often interpreted
as a time index which can be both discrete and continuous. A Gaussian process is a
particular stochastic process.

Definition 9 (Gaussian Process)
A stochastic process 𝐗 is called a Gaussian process if for any finite subset 𝜏 ⊆ 𝑇 of
its index set, the random variables 𝐗𝜏 have a joint Gaussian distribution [6].

32

2.4 Gaussian Processes

𝑁

𝐱𝑛

𝐟𝑛
𝜇

k

𝐲𝑛

Figure 2.5: The graphical model of a Gaussian process with 𝑁 observations (𝐱𝑛, 𝐲𝑛). Different
observations are independent given the latent function values 𝐟𝑛 which are all jointly Gaussian.
They are informed by the mean function 𝜇 and kernel k.

When using a Gaussian process 𝐗 to model a function 𝑓∶ 𝐴 → 𝐵, the index set 𝑇 is
assumed to be 𝐴 and all random variables are 𝐵-valued. The random variable 𝐗𝑎 then
models the function value 𝑓 (𝑎) for all 𝑎 ∈ 𝐴. Sampling a trajectory from 𝐗 corresponds
to sampling one possible function 𝑓 ∗.

Similar to the finite case, the random variables share a dependency structure. Instead of
a mean vector 𝝁 and a covariancematrix𝚺, a Gaussian process is completely determined
by a mean function 𝜇(𝑎) = 𝔼[𝑓 (𝑎)] and a covariance function

k(𝑎, 𝑎′) ≔ 𝔼[(𝑓 (𝑎) − 𝜇(𝑎))(𝑓 (𝑎′) − 𝜇𝑓(𝑎′))]
= cov[𝑓 (𝑎), 𝑓 (𝑎′)]
= cov[𝐗𝑎, 𝐗𝑎′]

(2.32)

with 𝑎, 𝑎′ ∈ 𝐴. The mean function encodes the point-wise mean over all trajectories
that could be sampled from 𝐗. The covariance function is also called a kernel and
describes the interaction between different parts of the function. A function that is
distributed according to a Gaussian process is denoted as 𝑓 ∼ 𝒢𝒫 (𝜇, k).

A GP can be used as a distribution over functions in the graphical model for regression
problems in (2.18). Because the random variables 𝐟𝑛 modeling the function value 𝑓 (𝐱𝑛)
are jointly Gaussian, they are not independent and thus are connected in the graphical
model in Figure 2.5. The choice of the mean function 𝜇 and the kernel k describe
the GP prior and are often referred to as hyper-parameters.

33

Chapter 2 Preliminaries

For convenience, the prior mean function 𝜇 is often assumed to be constant zero. This
assumption is without loss of generality [87] since otherwise, the observations (𝐗, 𝐲)
can be transformed to 𝐲′ = 𝐲 − 𝜇(𝐗). The Gaussian process based on the observations
(𝐗, 𝐲′) then only models the differences to the mean function. It is the covariance
functions that encode the assumptions about the underlying function.

Kernels

The covariance for any pair of random variables (𝐗𝑖, 𝐗𝑗) in a GP is given by the
kernel cov[𝐗𝑖, 𝐗𝑗] = k(𝑖, 𝑗). A kernel, therefore, can not be any arbitrary function but
must yield valid covariance matrices 𝚺. The matrix obtained by applying a kernel
pairwise to finitely many random variables is called the Gram matrix. Given two sets
𝐀 = {𝐚𝑖 | 𝑖 ∈ [𝑛]} and 𝐁 = {𝐛𝑗 | 𝑗 ∈ [𝑚]} and [𝑛] = {1, … , 𝑛}, the Gram matrix with respect
to 𝐀 and 𝐁 using kernel k is given by

k(𝐀, 𝐁) = 𝐊𝐀𝐁 ≔ (k(𝐚𝑖, 𝐛𝑗))𝑖∈[𝑛],
𝑗∈[𝑚]

. (2.33)

For the Gram matrix to be a valid covariance matrix 𝚺 of a Gaussian distribution, it
must be positive definite. Kernels are functions that fulfill the property that for every
possible subset of random variables, or more generally every set of elements in their
domain, their induced Gram matrix is positive definite.

Definition 10 (Kernel)
Given a non-empty set 𝐴, a function

k∶ 𝐴2 → ℝ (2.34)

is called a (positive definite) kernel or covariance function, if for any finite subset
𝑋 ⊆ 𝐴, the Gram matrix k(𝑋 , 𝑋) is positive definite.

The kernel is crucial in encoding the assumptions about the function a Gaussian process
should estimate. It is a measure of how much different points in the GP’s domain
inform each other. A natural assumption to make is that the closer together in the
domain two points lie, the more similar their function values will be. Similarly, to
predict a test point, training points close to it are probably more informative than those
further away.

34

2.4 Gaussian Processes

But closeness is not the only possible reason two points could be similar. Assume
a function that is a possibly noisy sinusoidal wave with a known frequency. Then,
two points that are a multiple of wavelengths apart should also have similar function
values. Such a kernel which is not only dependent on the distance between two points
but also their position in the input space is called non-stationary. A simple example of
such a non-stationary kernel is the linear kernel.

Definition 11 (Linear Kernel)
For a finite dimensional euclidean vector space ℝ𝑑, the linear kernel is defined as

klinear(𝐱𝑖, 𝐱𝑗) ≔ 𝐱T
𝑖 𝐱𝑗 = ⟨𝐱, 𝐱𝑗⟩ . (2.35)

Consider a function 𝑓∶ ℝ → ℝ which is distributed according to a GP with the linear
kernel 𝑓 ∼ 𝒢𝒫 (𝟎, klinear). According to the definition of GPs, for any two input
numbers 𝑥𝑖, 𝑥𝑗 ∈ ℝ their corresponding random variables 𝐟𝑥𝑖 and 𝐟𝑥𝑗 have a joint Gaussian
distribution

(
𝐟𝑥𝑖
𝐟𝑥𝑗
) ∼ 𝒩(𝟎, [k(𝑥𝑖, 𝑥𝑖) k(𝑥𝑖, 𝑥𝑗)

k(𝑥𝑗, 𝑥𝑖) k(𝑥𝑗, 𝑥𝑗)
]). (2.36)

Assuming that both 𝑥𝑖 and 𝑥𝑗 are not equal to zero, the correlation coefficient 𝜌 of these
two variables is given by

𝜌[𝐟𝑥𝑖 , 𝐟𝑥𝑗] =
cov[𝐟𝑥𝑖 , 𝐟𝑥𝑗]

√var[𝐟𝑥𝑖]√var[𝐟𝑥𝑗]

=
k(𝑥𝑖, 𝑥𝑗)

√k(𝑥𝑖, 𝑥𝑖)√k(𝑥𝑗, 𝑥𝑗)
=

𝑥𝑖𝑥𝑗

√𝑥
2
𝑖 √𝑥

2
𝑗

∈ {−1, 1} .
(2.37)

A correlation coefficient of plus or minus one implies that the value of one of the random
variables is a linear function of the other. Any function drawn from this Gaussian
process, such as the ones shown in Figure 2.6a, is, therefore, a linear function. This
observation generalizes to higher dimensions [87]. Gaussian process regression with a
linear kernel is equivalent to Bayesian linear regression as discussed in Section 2.3.

It is often of interest to also represent non-linear dependencies. A common approach
is to restrict information to local neighborhoods. A kernel which is a function of
‖𝐱𝑖−𝐱𝑗‖ is called stationary and is invariant to translations in the input space. The most
important stationary kernel is the squared exponential kernel.

35

Chapter 2 Preliminaries

−2 −1 0 1 2
−2

0

2

𝜇𝑓

(a) Linear
−2 −1 0 1 2

−2

0

2

𝜇𝑓
𝜎𝑓

𝑙

(b) SE with 𝜎𝑓 = 1 and 𝑙 = 1

−2 −1 0 1 2
−2

0

2

𝜇𝑓
𝜎𝑓

𝑙

(c) SE with 𝜎𝑓 = √2 and 𝑙 = 1
−2 −1 0 1 2

−2

0

2

𝜇𝑓
𝜎𝑓

𝑙

(d) RSE with 𝜎𝑓 = 1 and 𝑙 = 1/4

−2 −1 0 1 2
−2

0

2

𝜇𝑓

(e) Arc-cos with order 1

−2 −1 0 1 2
−2

0

2

𝜇𝑓

(f) Arc-cos with order 2

Figure 2.6: A comparison of samples drawn from GP priors with different kernels and hyper-
parameters. Dashed lines are single samples and the shaded area depicts two standard
deviations around themean. While samples from the linear kernel are always linear functions,
samples from squared exponential (SE) kernels are smooth functions of different variability.
The arc cosine kernel mimics the behavior of an infinitely wide neural network with a single
hidden layer.

36

2.4 Gaussian Processes

Definition 12 (Squared Exponential Kernel)
For a finite dimensional euclidean vector space ℝ𝑑, the squared exponential kernel
or RBF kernel is defined as

kSE(𝐱𝑖, 𝐱𝑗) ≔ 𝜎2𝑓 ⋅ exp(−1
2
(𝐱𝑖 − 𝐱𝑗)

T𝚲−1(𝐱𝑖 − 𝐱𝑗)) . (2.38)

The parameter 𝜎2𝑓 ∈ ℝ>0 is called the signal variance and 𝚲 = diag(𝑙21 , … , 𝑙2𝑑) is a
diagonal matrix of the squared length scales 𝑙𝑖 ∈ ℝ>0.

The similarity of two data points approaches one when they are close together and for
larger distances approaches zero with exponential drop off. It can be shown that this
kernel represents all infinitely differentiable functions [87]. Gaussian processes with
this covariance function are universal function approximators.

The squared exponential kernel is dependent on multiple parameters that influence its
behavior. In contrast to weight parameters in linear regression or constants in physical
models, these parameters do not specify the estimated function but rather the prior
belief about this function and are therefore hyper-parameters.

The hyper-parameters of the RBF kernel describe the expected dynamic range of the
function. The signal variance 𝜎2𝑓 specifies the average distance of function values from
the mean function. The different length scale parameters 𝑙𝑖 roughly specify the distance
of data points along their respective axis required for the function values to change
considerably. Figure 2.6 compares sample functions drawn from Gaussian processes
with the linear kernel, squared exponential kernels with different hyper-parameters,
and the arc cosine kernel [22]. Arc cosine kernels mimic the behavior of infinitely
wide neural networks with a single hidden layer. The order of an arc cosine kernel
specifies the activation function of such a neural network. The first three orders
assume step-functions, rectified linear units, or rectified quadratic units respectively.
Arc cosine kernels of low order behave similarly to squared exponential kernels in
practice but have different generalization properties. While GPs with an RBF kernel
return to the prior away from data yielding predictions roughly in the area 𝜇𝑓±2𝜎𝑓, the
arc cosine kernel of order one generalizes linearly using the derivative at the closest
data points.

Predictions and Posterior

To use Gaussian processes for regression, observations need to be combined with a
Gaussian process prior 𝑓 ∼ 𝒢𝒫 (𝟎, k) to obtain a predictive posterior. We assume

37

Chapter 2 Preliminaries

Gaussian noise 𝜖 ∼ 𝒩 (0, 𝜎2) with 𝐲𝑛 = 𝑓 (𝐱𝑛) + 𝜖 and denote the 𝑁 observations as
𝐗 = (𝐱1, … , 𝐱𝑁) and 𝐲 = (𝐲1, … , 𝐲𝑁). The likelihood of the observations given the
latent function values 𝐟 is given by

p(𝐲 |𝑓 , 𝐗, 𝜎) = p(𝐲 | 𝐟, 𝜎) =
𝑁
∏
𝑛=1

𝒩(𝐲𝑛 | 𝐟𝑛, 𝜎2)

= 𝒩 (𝐲 | 𝐟, 𝜎2I).
(2.39)

Given a vector of hyper-parameters 𝜽, the definition of Gaussian processes yields a
joint Gaussian distribution for the latent function values 𝐟 given by

p(𝐟 |𝐗, 𝜽) = 𝒩 (𝐟 |𝟎, 𝐊𝐟𝐟) (2.40)

where 𝐊𝐟𝐟 = k(𝐗, 𝐗) denotes the Grammatrix of the observed data. Combining the two
distributions according to the law of total probability yields the probability distribution
of the outputs conditioned on the inputs and is given by

p(𝐲 |𝐗, 𝜽) = ∫ p(𝐲 | 𝐟) p(𝐟 |𝐗, 𝜽) d𝐟

= ∫𝒩 (𝐲 | 𝐟, 𝜎2I)𝒩 (𝐟 |𝟎, 𝐊𝐟𝐟) d𝐟

= 𝒩 (𝐲 |𝟎, 𝐊𝐟𝐟 + 𝜎2I).

(2.41)

Note that this distribution is obtained by integrating over all possible latent function
values 𝐟 and thereby taking all possible function realizations into account. The closed-
form solution of the integral is obtained using well-known results about Gaussian
distributions, wich are, for example, detailed in [84].

Now consider a set of new points 𝐗∗ for which the predictive posterior should be
obtained. By definition of GPs, the latent function values 𝐟 of the data set and the latent
function values at the new points 𝐟∗ = 𝑓 (𝐗∗) have the joint Gaussian distribution

p((𝐟𝐟∗
) |𝐗, 𝐗∗, 𝜽) = 𝒩((𝐟𝐟∗

) |𝟎, [𝐊𝐟𝐟 𝐊𝐟∗
𝐊∗𝐟 𝐊∗∗

]). (2.42)

Adding the noise model to this distribution leads to the joint Gaussian of training
outputs 𝐲 and test outputs 𝐟∗ which is given by

p((𝐲𝐟∗
) |𝐗, 𝐗∗, 𝜽) = 𝒩((𝐲𝐟∗

) |𝟎, [𝐊𝐟𝐟 + 𝜎2I 𝐊𝐟∗
𝐊∗𝐟 𝐊∗∗

]). (2.43)

In this distribution, the training outputs 𝐲 are known. The predictive posterior for the
test outputs 𝐟∗ can therefore be directly obtained by applying (2.30) to (2.43) and is also
a Gaussian.

38

2.4 Gaussian Processes

−4 −2 0 2 4

−5

0

5

(a) GP Prior

−4 −2 0 2 4

−5

0

5

(b) GP Posterior

Figure 2.7: A GP prior with an RBF kernel (left) and posterior given a six observations (right).
The posterior has a non-zero mean function that interpolates the data exactly. Samples from
the posterior interpolate the data but vary in-between.

Lemma 13 (GP predictive posterior)
Assume a latent function with a Gaussian process distribution 𝑓 ∼ 𝒢𝒫 (𝟎, k) and 𝑁
training points 𝐗 with noisy observations of the form 𝐲 = 𝑓 (𝐗) + 𝒩 (𝟎, 𝜎2I). The
predictive posterior 𝐟∗ of the test points 𝐗∗ is then given by

p(𝐟∗ |𝐗, 𝐲, 𝐗∗) = 𝒩 (𝐟∗ |𝝁∗, 𝚺∗), where

𝝁∗ = 𝐊∗𝐟 (𝐊𝐟𝐟 + 𝜎2I)
−1
𝐲

𝚺∗ = 𝐊∗∗ − 𝐊∗𝐟 (𝐊𝐟𝐟 + 𝜎2I)
−1
𝐊𝐟∗.

(2.44)

This predictive posterior makes it possible to evaluate the function approximation based
on the input at arbitrary points in the input space. Since any set of these points always
has a joint Gaussian distribution, the predictive posterior defines a new Gaussian
process, the posterior Gaussian process, given the observations. This posterior process
𝒢𝒫 (𝜇post, kpost) has new mean and covariance functions given by

𝜇post(𝐚) = k(𝐚, 𝐗) (𝐊𝐟𝐟 + 𝜎2I)
−1
𝐲

kpost(𝐚, 𝐛) = k(𝐚, 𝐛) − k(𝐚, 𝐗) (𝐊𝐟𝐟 + 𝜎2I)
−1
k(𝐗, 𝐛).

(2.45)

Note that the posterior mean function is not necessarily the constant zero function.
Figure 2.7 shows samples from a pair of prior and posterior Gaussian processes with
an RBF kernel.

39

Chapter 2 Preliminaries

Computing the inverse (𝐊𝐟𝐟 + 𝜎2I)
−1

takes 𝒪(𝑁 3) time but can be done as a prepro-
cessing step since it is independent of the test points. Predicting the mean function
value of a single test point is a weighted sum of 𝑁 basis functions 𝜇∗ = 𝐊∗𝐟𝜷 where
𝜷 = (𝐊𝐟𝐟 + 𝜎2I)

−1
𝐲 which can be precomputed. After this pre-computation, predicting

the mean of a single test point takes 𝒪(𝑁) time. To predict the variance, it is still
necessary to perform a vector-matrix multiplication, which takes 𝒪(𝑁 2) time for a
single prediction. Since all of these operations are dependent on the number of training
points, evaluating Gaussian processes on large data sets can be computationally expen-
sive. Before introducing sparse approximations with better asymptotic complexity, we
first consider how to choose good values for the hyper-parameters 𝜽.

Choosing Hyper-Parameters

In the previous section, we derived the posterior GP given constant hyper-parameters
𝜽. In this case, Gaussian process models do not have to be trained or optimized at all as
the posterior GP can be computed analytically. Usually, however, the correct choice of
hyper-parameters is not clear a priori. In a fully Bayesian setup we place a prior on
the hyper-parameters p(𝜽) and marginalize it to derive the dependent distributions

p(𝑓) = ∫ p(𝑓 | 𝜽) p(𝜽) d𝜽

p(𝐲 |𝐗) = ∫ p(𝐲 | 𝐟) p(𝐟 |𝐗, 𝜽) p(𝜽) d𝐟 d𝜽.
(2.46)

Updating the belief about the distribution of the hyper-parameters then becomes part
of calculating the posterior using Bayes’ theorem. However, the integration required
in (2.46) is expensive as no closed form solution exists. While true posteriors can be
obtained for GPswith few observations such as in Bayesian optimization or probabilistic
numerics contexts [83, 96], the required calculations are often not tractable for larger
problems.

A common approximation is to use maximum-a-posteriori point-estimates instead.
These estimates are obtained by maximizing p(𝜽 |𝐗, 𝐲). This posterior is proportional
to the numerator of Bayes’ theorem and given by

p(𝜽 |𝐗, 𝐲) ∝ p(𝜽) p(𝐲 |𝐗, 𝜽)

= ∫ p(𝜽) p(𝐲 | 𝐟, 𝜽) p(𝐟 |𝐗, 𝜽) d𝐟.
(2.47)

40

2.5 Sparse Gaussian Processes with Inducing Points

If p(𝜽) is set to a flat distribution, the prior term vanishes and only the likelihood term
remains. Choosing hyper-parameters by maximizing the likelihood term is called a
type II maximum likelihood estimate.

The marginal likelihood is the integral of the product of Gaussians in (2.41) given by

p(𝐲 |𝐗, 𝜽) = 𝒩 (𝐲 |𝟎, 𝐊𝐟𝐟 + 𝜎2I). (2.48)

Instead of maximizing the marginal likelihood directly, it is numerically convenient to
minimize the negative logarithm of the likelihood

ℒ(𝜽) = − log p(𝐲 |𝐗, 𝜽)

= 1
2
𝐲T (𝐊𝐟𝐟 + 𝜎2I)

−1
𝐲 + 1

2
log|𝐊𝐟𝐟 + 𝜎2I| + 𝑁

2
log(2𝜋).

(2.49)

Since the logarithm is a monotonous function it does not change the position of optima.
The maximum likelihood estimate is the solution of the optimization problem

𝜽∗ ∈ argmin
𝜽

ℒ(𝜽) (2.50)

and is calculated using standard approaches to non-convex optimization. The compu-
tational complexity of evaluating the likelihood term and its derivatives is dominated
by the inversion of 𝐊𝐟𝐟 + 𝜎2I with a time complexity of 𝒪(𝑁 3).

2.5 Sparse Gaussian Processes with Inducing Points

Adrawback of Gaussian processes in real-world applications is their high computational
cost for large data sets. Assume a data set (𝐗, 𝐲) with 𝑁 training samples, then the
operations on a posterior Gaussian process are usually dominated by the inversion
of the kernel matrix 𝐊𝐟𝐟 which takes 𝒪(𝑁 3) time. While this inversion can be pre-
computed, the cost of predicting the mean and variance of one test point remains
𝒪(𝑁) and 𝒪(𝑁 2), respectively. Additionally, these operations have a space requirement
of 𝒪(𝑁 2). The goal of sparse approximations of Gaussian processes is to find model
representations that avoid the cubic complexities or at least restrict them to the training
phase of finding hyper-parameters. This section introduces one type of approximation
based on representing the complete data set through a smaller set of points [103].
The next section will place this approximation in a principled variational context [56,
113].

41

Chapter 2 Preliminaries

The most direct approach to reducing the computational cost of inverting 𝐊𝐟𝐟 is to
restrict observations to a small subset of size 𝑀 ≪ 𝑁 of the original data. Calculating
the posterior GP relative to these 𝑀 observations only has a time complexity of 𝒪(𝑀3).
This approach can work for data sets with a very high level of redundancy but does
impose the problem of choosing an appropriate subset. While choosing a random
subset can be effective [103], the optimal choice is dependent on the hyper-parameters.
Both the subset and the hyper-parameters should, therefore, be chosen in a joint
optimization scheme. The selection of an appropriate subset defines a combinatorial
optimization problem and is very hard to solve.

To overcome this problem, inducing observation approximations lift the restriction of
choosing points from the data set and instead allow arbitrary positions in the input
space. The original data set is replaced by an inducing data set (𝐙, 𝐮) of inducing inputs
𝐙 and inducing variables 𝐮 = 𝑓 (𝐙) which are equal to the true latent values of the
function 𝑓 ∼ 𝒢𝒫 (𝟎, k). Since they are not true observations, they are assumed to be
noise-free. Given an inducing data set and hyper-parameters 𝜽, the predictive posterior
of this approximation is a standard GP posterior

p(𝐟∗ |𝐗∗, 𝐙, 𝐮, 𝜽) = 𝒩 (𝐊∗𝐮𝐊
−1
𝐮𝐮𝐮, 𝐊∗∗ − 𝐊∗𝐮𝐊

−1
𝐮𝐮𝐊𝐮∗) (2.51)

with 𝐊𝐮𝐮 = k(𝐙, 𝐙) denoting the Gram matrix of the inducing inputs.

The true data set is independent given the latent function 𝑓 and can be assumed
independent given the inducing data set if it represents 𝑓 well. The likelihood of the
original data under the Gaussian process trained on the inducing data set is given by

p(𝐲 |𝐗, 𝐙, 𝐮, 𝜽) =
𝑁
∏
𝑛=1

p(𝐲𝑛 | 𝐱𝑛, 𝐙, 𝐮, 𝜽)

=
𝑁
∏
𝑛=1

𝒩(𝐲𝑛 |𝐊𝐟𝐧𝐮𝐊
−1
𝐮𝐮𝐮, 𝐊𝐟𝑛𝐟𝑛 − 𝐊𝐟𝑛𝐮𝐊

−1
𝐮𝐮𝐊𝐮𝐟𝑛 + 𝜎2)

= 𝒩 (𝐲|𝐊𝐟𝐮𝐊
−1
𝐮𝐮𝐮, diag(𝐊𝐟𝐟 − 𝐊𝐟𝐮𝐊

−1
𝐮𝐮𝐊𝐮𝐟) + 𝜎2I)

= 𝒩 (𝐲 |𝐊𝐟𝐮𝐊
−1
𝐮𝐮𝐮, diag(𝐊𝐟𝐟 − 𝐐𝐟𝐟) + 𝜎2I)

(2.52)

with 𝐐𝐟𝐟 ≔ 𝐊𝐟𝐮𝐊
−1
𝐮𝐮𝐊𝐮𝐟.

Since the inducing variables 𝐮 are latent function values, the original GP prior for 𝑓 is
a reasonable prior for their values given by

p(𝐮 |𝐙) = 𝒩 (𝐮 |𝟎, 𝐊𝐮𝐮). (2.53)

42

2.5 Sparse Gaussian Processes with Inducing Points

−4 −2 0 2 4

−1

0

1

(a) Full GP

−4 −2 0 2 4

−1

0

1

(b) FITC approximation

Figure 2.8: A FITC GP approximation compared to a full GP posterior with data from a noisy
sine function. The inducing inputs are located at the dart positions. Since the inducing
outputs are marginalized, only their 𝑥-coordinate is meaningful. Three inducing inputs are
enough to approximate the full GP with reasonable accuracy.

Using this prior, the inducing variables can be marginalized through an integral of a
product of Gaussians in

p(𝐲 |𝐗, 𝐙) = ∫ p(𝐲 |𝐗, 𝐙, 𝐮) p(𝐮 |𝐙) d𝐮

= ∫ p(𝐲 |𝐗, 𝐙, 𝐮)𝒩 (𝐮 |𝟎, 𝐊𝐮𝐮) d𝐮

= 𝒩 (𝐲 |𝟎, 𝐐𝐟𝐟 + diag(𝐊𝐟𝐟 − 𝐐𝐟𝐟)),

(2.54)

dropping the conditioning on 𝜽 for notational simplicity. Due to the conditional
independence assumption of the data given the inducing variables, this formulation is
called the fully independent training conditional (FITC) and was introduced by Snelson
et al. [101, 103].

This approximate marginal likelihood can be interpreted as the marginal likelihood of
a specific GP defined on the original data set (𝐗, 𝐲). In this GP, the original kernel k is
replaced by the kernel kFITC. With 𝕀 denoting the indicator function, it is defined as

𝒬(𝐚, 𝐛) ≔ 𝐊𝐚𝐮𝐊
−1
𝐮𝐮𝐊𝐮𝐛

kFITC(𝐚, 𝐛) ≔ 𝒬(𝐚, 𝐛) + 𝕀(𝐚 = 𝐛) (k(𝐚, 𝐛) − 𝒬(𝐚, 𝐛)) .
(2.55)

This kernel is equal to k when both arguments are identical and equal to 𝒬 everywhere
else. For well-chosen inducing inputs, 𝐐𝐟𝐟 is a low-rank approximation of 𝐊𝐟𝐟 [103].

43

Chapter 2 Preliminaries

The inducing inputs 𝐙 are hidden in the kernel matrix 𝐊𝐮𝐮 and are additional hyper-
parameters to this kernel. The predictive posterior 𝐟∗ of the test points 𝐗∗ is then given
by

p(𝐟∗ |𝐗∗, 𝐗, 𝐲, 𝐙) = 𝒩 (𝐟∗ |𝝁∗, 𝚺∗), where

𝝁∗ = 𝐐∗𝐟 (𝐐𝐟𝐟 + diag(𝐊𝐟𝐟 − 𝐐𝐟𝐟) + 𝜎2I)
−1
𝐲

𝚺∗ = 𝐊∗∗ − 𝐐∗𝐟 (𝐐𝐟𝐟 + diag(𝐊𝐟𝐟 − 𝐐𝐟𝐟) + 𝜎2I)
−1
𝐐𝐟∗.

(2.56)

and 𝐐𝐟𝐟 ≔ 𝐊𝐟𝐮𝐊
−1
𝐮𝐮𝐊𝐮𝐟 obtained by inserting the kernel definition into Lemma 13.

This formulation of the predictive posterior for the FITC approximation still requires
the inversion of matrices of size 𝑁 × 𝑁 and therefore does not offer computational
improvements. Using the matrix inversion lemma [84], they can be rewritten in the
form

𝝁∗ = 𝐊∗𝐮𝐁
−1𝐊𝐮𝐟 (diag(𝐊𝐟𝐟 − 𝐐𝐟𝐟) + 𝜎2I)

−1
𝐲

𝚺∗ = 𝐊∗∗ − 𝐊∗𝐮 (𝐊
−1
𝐮𝐮 − 𝐁−1) 𝐊𝐮∗

𝐁 = 𝐊𝐮𝐮 + 𝐊𝐮𝐟 (diag(𝐊𝐟𝐟 − 𝐐𝐟𝐟) + 𝜎2I)
−1
𝐊𝐟𝐮,

(2.57)

which only involves the inversion of 𝑀 × 𝑀 matrices and one diagonal 𝑁 × 𝑁 matrix.
Implemented this way, the calculation of all terms independent of the test points has
a complexity of 𝒪(𝑁𝑀2) and predicting individual means and variances takes 𝒪(𝑀)
and 𝒪(𝑀2) time respectively. The space requirement also drops to 𝒪(𝑀2). Since the
positions of the inducing inputs 𝐙 are additional hyper-parameters in kFITC, they can
be chosen together with the hyper-parameters of the original kernel 𝜽 using maximum
likelihood. This optimization chooses the positions in such a way that together with
appropriate other hyper-parameters, the original data is represented as well as possible.
Figure 2.8 shows that a surprisingly small number of inducing inputs can be enough to
represent the dynamics of a function.

However, with a large number of inducing inputs, the number of hyper-parameters can
grow large as well. A large number of hyperparameters implies a danger of overfitting
since the altered Gaussian process has no direct connection to the original Gaussian
process over the complete training set. It is also not clear what properties a set of
training inputs 𝐙must fulfill such that it recovers an original GP well. To address these
issues, a variational formulation of sparse GPs using inducing observations formulated
originally in [56, 113] is discussed next.

44

2.6 Variational Sparse Gaussian Process Approximations

𝑁

𝐱𝑛

𝐟𝑛𝜽
𝐙

𝐮∗

𝐲𝑛

(a) SGPR

𝑁

𝐱𝑛

𝐟𝑛𝜽
𝐙

𝐮

𝐲𝑛

(b) SVGP

Figure 2.9: Graphical models of variational sparse GP approximations with inducing inputs.
The latent function values 𝐟𝑛 are assumed to be independent given the variational parameters
𝐙, 𝐮 and hyper-parameters 𝜽. Since the observations 𝐲𝑛 inform the optimal q∗(𝐮) distribution
in the SGPR approximations, they are not conditionally independent in the SGPR approx-
imation. In the SVGP approximation, the parameters for q(𝐮) are part of the variational
bound, which implies conditional independence between observations and enables stochastic
optimization techniques.

2.6 Variational Sparse Gaussian Process Approximations

Titsias [113] introduced a variational interpretation of sparse GPs with inducing ob-
servations (𝐙, 𝐮). Similar to the FITC approximation discussed above, inducing obser-
vations are assumed to be generated from the latent function 𝐮 = 𝑓 (𝐙). Due to the
consistency of GPs, the true data and inducing data are jointly Gaussian.

p(𝐟, 𝐮) = 𝒩((𝐟𝐮) |𝟎, (
𝐊𝐟𝐟 𝐊𝐟𝐮
𝐊𝐮𝐟 𝐊𝐮𝐮

)) (2.58)

Instead of defining a new GP on the inducing data, we want to choose the 𝑀 inducing
locations such that the original GP defined on the 𝑁 true data points is approximated
as closely as possible.

More formally, we consider the predictive posterior of the augmented GP containing
both the true and inducing data given by

p(𝐟∗ | 𝐲) = ∫ p(𝐟∗ | 𝐟, 𝐮) p(𝐟, 𝐮 |𝐲) d𝐟 d𝐮, (2.59)

45

Chapter 2 Preliminaries

where we drop the conditioning on 𝐗 and 𝐙 for notational simplicity. We adopt this
convention for the rest of this chapter. The inducing observations are optimal if 𝐟∗ and
𝐟 are independent given 𝐮 in

p(𝐟∗ | 𝐟, 𝐮) = p(𝐟∗ |𝐮)
p(𝐟, 𝐮 |𝐲) = p(𝐟 |𝐮) p(𝐮 |𝐲).

(2.60)

In this case, 𝐮 is said to be a sufficient statistic for 𝐟, capturing all information contained
in the latter. In practice, it is hard to find (𝐙, 𝐮) that are indeed a sufficient statistic for
𝐟. We will approximate this situation with a variational distribution q(𝐟, 𝐮), thereby
formulating a variational approximation to the original GP. Due to the joint Gaussian
distribution in (2.58), it is convenient to consider the factorization

q(𝐟, 𝐮) = p(𝐟 |𝐮) q(𝐮), (2.61)

where p(𝐟 |𝐮) is a standard Gaussian conditional. Assuming 𝐮 is indeed a sufficient
statistic for 𝐟, the variational predictive posterior reduces to

q(𝐟∗) = ∫ p(𝐟∗ | 𝐟, 𝐮) q(𝐟, 𝐮) d𝐟 d𝐮

= ∫ p(𝐟∗ |𝐮) p(𝐟 |𝐮) q(𝐮) d𝐟 d𝐮

= ∫ p(𝐟∗ |𝐮) q(𝐮) d𝐮.

(2.62)

To formulate a variational lower bound on the original marginal likelihood ℒGP

in (2.41), we have to decide how to choose 𝐙 and q(𝐮) such that as much information of
𝐟 is captured as possible. We will discuss two approaches. First, we derive the optimal
choice of q(𝐮) given a set of inducing inputs 𝐙. Because calculating this optimal choice
is computationally expensive, we will then show how to improve performance through
further approximation.

Optimal Inducing Outputs

We assume a free-form variational distribution q(𝐮) to derive the variational lower
bound to the likelihood ℒ SGPR of the augmented model.

ℒ SGPR(𝜽, 𝐙, q(𝐮)) = − log p(𝐲 |𝜽, 𝐙, q(𝐮))

= − log∫ p(𝐲 | 𝐟) p(𝐟 |𝐮) p(𝐮) d𝐟 d𝐮

= − log∫ q(𝐟, 𝐮)
p(𝐲 | 𝐟) p(𝐟 |𝐮) p(𝐮)

q(𝐟, 𝐮)
d𝐟 d𝐮.

(2.63)

46

2.6 Variational Sparse Gaussian Process Approximations

We bound the likelihood using Jensen’s inequality [13] which states that for convex
functions 𝑓 and integrable functions 𝑔 it holds that

𝑓 (∫ 𝑔(𝑥) d𝑥) ≤ ∫ 𝑓 (𝑔(𝑥)) d𝑥. (2.64)

Since the natural logarithm is concave we have

ℒ SGPR(𝜽, 𝐙, q(𝐮)) ≥ −∫ q(𝐟, 𝐮) log
p(𝐲 | 𝐟) p(𝐟 |𝐮) p(𝐮)

q(𝐟, 𝐮)
d𝐟 d𝐮

= −∫ p(𝐟 |𝐮) q(𝐮) log
p(𝐲 | 𝐟) p(𝐟 |𝐮) p(𝐮)

p(𝐟 |𝐮) q(𝐮)
d𝐟 d𝐮

= −∫ p(𝐟 |𝐮) q(𝐮) log
p(𝐲 | 𝐟) p(𝐮)

q(𝐮)
d𝐟 d𝐮

= −∫ q(𝐮) (∫ p(𝐟 |𝐮) log p(𝐲 | 𝐟) d𝐟 + log
p(𝐮)
q(𝐮)

) d𝐮

= −∫ q(𝐮) (𝔼p(𝐟|𝐮)[log p(𝐲 | 𝐟)] + log
p(𝐮)
q(𝐮)

) d𝐮

= 𝔼q(𝐟)[log p(𝐲 | 𝐟)] − KL(q(𝐮) ‖ p(𝐮)),

(2.65)

dropping the conditioning on 𝜽 and 𝐙. We assume a Gaussian likelihood p(𝐲 | 𝐟) = 𝒩 (𝐲 |
𝐟, 𝜎2𝑛 I). The expectation of the log-likelihood can be evaluated analytically [84] and is
given by

𝔼p(𝐟|𝐮)[log p(𝐲 | 𝐟)] = ∫ p(𝐟 |𝐮) log p(𝐲 | 𝐟) d𝐟

= ∫ log𝒩(𝐲| 𝐟, 𝜎2𝑛 I)𝒩 (𝐟 |𝐊𝐟𝐮𝐊
−1
𝐮𝐮𝐮, 𝐊𝐟𝐟 − 𝐐𝐟𝐟) d𝐟

= log𝒩(𝐲|𝐊𝐟𝐮𝐊
−1
𝐮𝐮𝐮, 𝜎2𝑛 I) −

1
2𝜎2𝑛

tr(𝐊𝐟𝐟 − 𝐐𝐟𝐟)

= log𝐺(𝐮) − 1
2𝜎2𝑛

tr(𝐊𝐟𝐟 − 𝐐𝐟𝐟),

(2.66)

47

Chapter 2 Preliminaries

where we set 𝐺(𝐮) = 𝒩 (𝐲 |𝐊𝐟𝐮𝐊
−1
𝐮𝐮𝐮, 𝜎2𝑛 I), 𝐐𝐟𝐟 = 𝐊𝐟𝐮𝐊

−1
𝐮𝐮𝐊𝐮𝐟 and where tr(𝐌) denotes

the trace of the matrix 𝐌. Inserting (2.66) into (2.65) yields

ℒ SGPR(𝜽, 𝐙, q(𝐮)) ≥ −∫ q(𝐮) (𝔼p(𝐟|𝐮)[log p(𝐲 | 𝐟)] + log
p(𝐮)
q(𝐮)

) d𝐮

= −∫ q(𝐮) (log𝐺(𝐮) − 1
2𝜎2𝑛

tr(𝐊𝐟𝐟 − 𝐐𝐟𝐟) + log
p(𝐮)
q(𝐮)

) d𝐮

= −∫ q(𝐮) log
𝐺(𝐮) p(𝐮)

q(𝐮)
d𝐮 + 1

2𝜎2𝑛
tr(𝐊𝐟𝐟 − 𝐐𝐟𝐟).

(2.67)

The distribution q(𝐮) is chosen optimally if it maximizes the variational bound ℒ SGPR

in

argmax
q(𝐮)

ℒ SGPR(𝜽, 𝐙, q(𝐮))

= argmax
q(𝐮)

−∫ q(𝐮) log
𝐺(𝐮) p(𝐮)

q(𝐮)
d𝐮 + 1

2𝜎2𝑛
tr(𝐊𝐟𝐟 − 𝐐𝐟𝐟)

= argmax
q(𝐮)

−∫ q(𝐮) log
𝐺(𝐮) p(𝐮)

q(𝐮)
d𝐮

= argmin
q(𝐮)

KL(q(𝐮) ‖𝐺(𝐮) p(𝐮)),

(2.68)

where KL(q ‖ p) denotes the Kullback-Leibler divergence. This divergence is minimized
if q and p are proportional and 𝐺(𝐮) p(𝐮) is a product of Gaussians

q∗(𝐮) ∝ 𝐺(𝐮) p(𝐮) = 𝒩 (𝐲 |𝐊𝐟𝐮𝐊
−1
𝐮𝐮𝐮, 𝜎2𝑛 I)𝒩 (𝐮 |𝟎, 𝐊𝐮𝐮), (2.69)

where p(𝐮) is due to the GP prior in (2.58). Since the product of two Gaussian densities
is an un-normalized Gaussian density, the optimal choice q∗(𝐮) is a Gaussian given
by

q∗(𝐮) =
𝐺(𝐮) p(𝐮)

∫ 𝐺(𝐮) p(𝐮) d𝐮
= 𝒩 (𝐮 |𝝁𝑢, 𝚺𝑢), with

𝝁𝑢 = 𝜎−2𝑛 𝐊𝐮𝐮𝐁
−1𝐊𝐮𝐟𝐲

𝚺𝑢 = 𝐊𝐮𝐮𝐁
−1𝐊𝐮𝐮

𝐁 = 𝐊𝐮𝐮 + 𝜎−2𝑛 𝐊𝐮𝐟𝐊𝐟𝐮.

(2.70)

48

2.6 Variational Sparse Gaussian Process Approximations

Inserting q∗ into (2.67) yields the final bound

ℒ SGPR(𝜽, 𝐙) ≥ ℒ SGPR(𝜽, 𝐙, q∗(𝐮))

= −∫ q∗(𝐮) log
𝐺(𝐮) p(𝐮)
q∗(𝐮)

d𝐮 + 1
2𝜎2𝑛

tr(𝐊𝐟𝐟 − 𝐐𝐟𝐟)

= −∫
𝐺(𝐮) p(𝐮)

∫ 𝐺(𝐮) p(𝐮) d𝐮
log

𝐺(𝐮) p(𝐮)
𝐺(𝐮) p(𝐮)

∫ 𝐺(𝐮) p(𝐮) d𝐮

d𝐮 + 1
2𝜎2𝑛

tr(𝐊𝐟𝐟 − 𝐐𝐟𝐟)

= − log∫𝐺(𝐮) p(𝐮) d𝐮 + 1
2𝜎2𝑛

tr(𝐊𝐟𝐟 − 𝐐𝐟𝐟)

= − log𝒩(𝐲|𝟎, 𝐐𝐟𝐟 + 𝜎2𝑛 I) +
1
2𝜎2𝑛

tr(𝐊𝐟𝐟 − 𝐐𝐟𝐟),

(2.71)

which can be maximized to jointly find hyper-parameters 𝜽 and the variational param-
eters 𝐙. Evaluating this bound takes 𝒪(𝑁𝑀2) time. In contrast to the FITC approxi-
mation, where inducing inputs are additional hyper-parameters to the model that can
lead to overfitting, adding inducing inputs 𝐙 to the variational model only improves
the approximation to the full GP.

Figure 2.9a shows the graphical model for the variational GP approximation using
the optimal q∗(𝐮) distribution. The inducing inputs 𝐙 are referred to as variational
parameters. While the SGPR model is more computationally efficient, the dependencies
between different observations are not wholely removed. The optimal choice for q∗(𝐮)
depends on the observations in (2.70). Because of this, the bound does not factorize
along the data, preventing stochastic variational inference techniques [56] and requiring
the bound to be evaluated jointly for all data points. Additionally, evaluating the
predictive posterior (2.62) takes 𝒪(𝑀3 + 𝑀𝑁) time. For large 𝑁, linear growth with
the amount of observations can be prohibitive. We will now consider the SVGP model
introduced by Hensman et al. [56] that avoids this growth.

Approximate Inducing Outputs

In the SGPR approximation, a linear dependency on the number of points in the true
data set is introduced through q∗(𝐮). We have shown in (2.70) that this optimal choice
is a Gaussian. Instead of using q∗(𝐮), the SVGP model shown in Figure 2.9b uses a
free-form Gaussian q(𝐮) = 𝒩 (𝐮 |𝐦, 𝐒). The 𝒪(𝑀2) variational parameters in 𝐦 and 𝐒
are optimized jointly with 𝐙 in a variational bound. Poor choices of 𝐦 and 𝐒 can only

49

Chapter 2 Preliminaries

0 0.2 0.4 0.6 0.8 1

−1

0

1

(a) FITC with 𝑀 = 10
0 0.2 0.4 0.6 0.8 1

−1

0

1

(b) FITC with 𝑀 = 300

0 0.2 0.4 0.6 0.8 1

−1

0

1

(c) SGPR with 𝑀 = 10
0 0.2 0.4 0.6 0.8 1

−1

0

1

(d) SGPR with 𝑀 = 300

0 0.2 0.4 0.6 0.8 1

−1

0

1

(e) SVGP with 𝑀 = 10
0 0.2 0.4 0.6 0.8 1

−1

0

1

(f) SVGP with 𝑀 = 300

Figure 2.10: A comparison of sparse GP approximations with inducing inputs. While the FITC
approximation does not converge to the full GP for large 𝑀, both variational approaches do.
For SGPR and FITC, the inducing outputs are marginalized and only the 𝑥-coordinates are
meaningful. For SVGP, inducing outputs are optimized as well.

50

2.6 Variational Sparse Gaussian Process Approximations

worsen the variational approximation compared to the optimal choice in ℒ SGPR but
does not alter the model.

To derive the variational bound ℒ SVGP, we start with the bound in (2.67). Instead of
inserting the optimal q∗(𝐮), we reformulate the bound to recover an expectation and
KL-divergence in

ℒ SVGP(𝜽, 𝐙,𝐦, 𝐒)

≥ −∫ q(𝐮) log
𝐺(𝐮) p(𝐮)

q(𝐮)
d𝐮 + 1

2𝜎2𝑛
tr(𝐊𝐟𝐟 − 𝐐𝐟𝐟)

= −∫ q(𝐮) log
𝐺(𝐮) p(𝐮)

q(𝐮)
d𝐮 + 1

2𝜎2𝑛
tr(𝐊𝐟𝐟 − 𝐐𝐟𝐟)

= −∫ log𝐺(𝐮) q(𝐮) d𝐮 + KL(q(𝐮) ‖ p(𝐮)) + 1
2𝜎2𝑛

tr(𝐊𝐟𝐟 − 𝐐𝐟𝐟)

= −𝔼q(𝐮)[log𝐺(𝐮)] + KL(q(𝐮) ‖ p(𝐮)) + 1
2𝜎2𝑛

tr(𝐊𝐟𝐟 − 𝐐𝐟𝐟).

(2.72)

Similar to (2.66), this expectation can be evaluated analytically and is given by

𝔼q(𝐮)[log𝐺(𝐮)] = ∫ log𝐺(𝐮) q(𝐮) d𝐮

= ∫ log𝒩(𝐲|𝐊𝐟𝐮𝐊
−1
𝐮𝐮𝐮, 𝜎2𝑛 I)𝒩 (𝐮 |𝐦, 𝐒) d𝐮

= log𝒩(𝐲|𝐊𝐟𝐮𝐊
−1
𝐮𝐮𝐦, 𝜎2𝑛 I) −

1
2𝜎2𝑛

tr(𝐊𝐟𝐮𝐊
−1
𝐮𝐮𝐒𝐊

−1
𝐮𝐮𝐊𝐮𝐟).

(2.73)

Inserting (2.73) into (2.72) yields the final bound for the SVGP model given by

ℒ SVGP(𝜽, 𝐙,𝐦, 𝐒)

≥ −𝔼q(𝐮)[log𝐺(𝐮)] + KL(q(𝐮) ‖ p(𝐮)) + 1
2𝜎2𝑛

tr(𝐊𝐟𝐟 − 𝐐𝐟𝐟)

= − log𝒩(𝐲|𝐊𝐟𝐮𝐊
−1
𝐮𝐮𝐦, 𝜎2𝑛 I) + KL(q(𝐮) ‖ p(𝐮))

+ 1
2𝜎2𝑛

tr(𝐊𝐟𝐟 − 𝐐𝐟𝐟) +
1
2𝜎2𝑛

tr(𝐊𝐟𝐮𝐊
−1
𝐮𝐮𝐒𝐊

−1
𝐮𝐮𝐊𝐮𝐟).

(2.74)

The KL-divergence is a divergence of two Gaussians which can be evaluated analytically.
While evaluating the complete bound still takes 𝒪(𝑁𝑀2), the data-likelihood term is
given by a diagonal Gaussian which factorizes along the data. This enables stochastic
optimization techniques like mini-batching, greatly increasing the scalability of the

51

Chapter 2 Preliminaries

variational GP approximation to large data sets [56]. Similarly, evaluating the predictive
posterior (2.62) now takes 𝒪(𝑀3) time, removing the dependency on the training data
completely. Figure 2.10 compares predictive posteriors for the FITC, SGPR and SVGP
approximations. While the approximations show similar results with small amounts of
inducing inputs, both SGPR and SVGP converge to the original GP for large 𝑀 while
the FITC approximation does not. Because the SGPR approximation does not explicitly
represent inducing outputs, only the input locations are meaningful, similar to the
FITC approximation. SVGP directly infers a posterior about latent function values,
which are shown in the figure.

The 𝒪(𝑀3) computational cost due to the inversion of 𝐊𝐮𝐮 can still be prohibitive for
models with a large number of inducing points. To reduce the number of required
points, recent work explored how Bayesian inference can be employed in the search
for good inducing point locations [58, 90]. There have also been multiple extensions
to the variational inducing point approach to reduce the computational cost further.
One approach is to impose a grid structure on the inducing inputs 𝐙 [122]. Instead of
optimizing their location, the position of a large number of inputs is fixed to perform
fast computations exploiting the structure. While this approach suffers from the curse
of dimensionality, it can increase performance for low input dimensionalities. Another
approach is to orthogonally decouple the computations for predictive means and
variances [21, 93, 98]. This decoupling allows the calculation of the predictive mean in
linear time, allowing for a larger number of inducing points for the mean.

2.7 Hierarchical Gaussian Processes

While GPs offer a principled non-parametric approach to representing distributions
over functions, they can be restrictive in the functions they can represent. Many
extensions to standard GPs have been studied which introduce additional hierarchical
structure such as GP latent variable models [33, 114], warped GP models [74, 102] or
mixtures of experts models [75, 86, 115]. The hierarchical structure typically introduces
the requirement to propagate uncertainties through Gaussian processes, which is
analytically intractable in most cases. Many extensions can be interpreted as special
cases of the hierarchical or deep Gaussian process model [31, 32, 73] in which a
nested generative process is formulated by using the output of one GP as the input of
another.

In a deep GP, rather than assuming that observational data is generated through a
draw from a single GP which is then corrupted by noise in 𝐲 = 𝑓 (𝐱) + 𝜖, we assume

52

2.7 Hierarchical Gaussian Processes

𝑁

𝐱𝑛

𝐟𝑛,1
𝐙1

𝐮1

𝐟𝑛,𝐿
𝐙𝐿

𝐮𝐿

𝜽

𝐲𝑛

Figure 2.11: Graphical model of a variational deep GP approximation with inducing inputs. A
deep GP is a composition of 𝐿 functions where each 𝑓𝑙 is drawn from a GP. Similar to shallow
variational GP approximations, each GP is augmented with inducing observations.

that data is generated via a composition of 𝐿 functions

𝐲 = 𝑓𝐿(𝑓𝐿−1(⋯ (𝑓1(𝐗)))) + 𝜖, (2.75)

where each 𝑓𝑙 is drawn from a GP. This new compositional prior 𝑓𝐿 ∘ ⋯ ∘ 𝑓1 is no longer
a Gaussian process [43] and can represent a broader set of functions.

Figure 2.11 shows the graphical model of a deep GP. We represent the result of applying
the first 𝑙 functions 𝑓𝑙 ∘ ⋯ ∘ 𝑓1 on the inputs 𝐗 as 𝐟𝑙 and identify 𝐟0 = 𝐗. The joint
probability of the function values and the outputs can then be written as

p(𝐲, 𝐟1, … , 𝐟𝐿 |𝐗) = p(𝐲 | 𝐟𝐿)
𝐿
∏
𝑙=1

p(𝐟𝑙 | 𝐟𝑙−1), with

𝐲 ∣ 𝐟𝐿 ∼ 𝒩 (𝐟𝐿, 𝜎2𝑛 I)
𝐟𝑙 ∣ 𝐟𝑙−1 ∼ 𝒩 (𝟎, 𝐊𝐟𝑙𝐟𝑙 + 𝜎2𝑙 I).

(2.76)

The structure of the conditionals p(𝐟𝑙 | 𝐟𝑙−1) is implied by the assumption that the 𝑓𝑙 are
drawn from GPs and (2.41). Note that following the original formulation in [32], we
assume independent Gaussian noise 𝜎2𝑙 as part of every function 𝑓𝑙. We will denote the

53

Chapter 2 Preliminaries

kernel matrix at the 𝑙th level as 𝐊𝑙 𝑙 = 𝐊𝐟𝑙𝐟𝑙 . The 𝐟𝑙 are all latent variables, and inference
over them is very challenging. Because they capture the result of applying multiple
GPs, they are highly dependent on each other, thereby implying dependence between
the different functions as well. We will now derive two extensions of the sparse
variational approximations in Section 2.6 to the hierarchical case, nested variational
compression [57] and doubly stochastic variational inference [94] to approximate the
marginal likelihood of the deep Gaussian process model

p(𝐲 |𝐗) = ∫ p(𝐲, 𝐟1, … , 𝐟𝐿 |𝐗) d𝐟1… d𝐟𝐿. (2.77)

Nested Variational Compression

The challenge in deriving the marginal likelihood for deep GPs stems from the prop-
agation of uncertainties through multiple GPs. In Section 2.6 and Figure 2.9b we
showed how to achieve conditional independence between data points in a single GP
by augmenting the model with a set of inducing observations. The SVGP model is a
compressed representation in which a small number of inducing points represents the
full GP defined on all observations. In nested variational compression (NVC) presented
by Hensman et al. [57], this compression is applied recursively for all GPs in the deep
GP hierarchy. To derive a tractable variational lower bound, an additional step is
necessary to avoid the inter-layer cross-dependencies.

The bound in (2.73) can be used directly to approximate p(𝐟1 |𝐗) as the innermost
function in a deep GP is a standard GP model. Our next goal is to derive a bound on
the outputs of the second layer

log p(𝐟2 |𝐮2) = log∫ p(𝐟2, 𝐟1, 𝐮1 |𝐮2) d𝐟1 d𝐮1

= log∫ p(𝐟2, |𝐮2, 𝐟1, 𝐮1) p(𝐟1, 𝐮1) d𝐟1 d𝐮1,
(2.78)

that is, an expression in which the uncertainty about the 𝐟1 and the cross-layer depen-
dencies on the 𝐮1 are both marginalized. We start by considering the relevant terms

54

2.7 Hierarchical Gaussian Processes

from (2.76) and apply (2.73) to marginalize 𝐟1 in

log p(𝐟2 |𝐮2, 𝐮1) = log∫ p(𝐟2, 𝐟1 |𝐮2, 𝐮1) d𝐟1

≥ log∫ p̄(𝐟2 |𝐮2, 𝐟1) ̄p(𝐟1 |𝐮1)

⋅ exp(− 1
2𝜎21

tr(𝐊11 − 𝐐11) −
1
2𝜎22

tr(𝐊22 − 𝐐22)) d𝐟1

≥ 𝔼 ̄p(𝐟1|𝐮1)[log ̄p(𝐟2 |𝐮2, 𝐟1)]

− 𝔼 ̄p(𝐟1|𝐮1)[
1
2𝜎22

tr(𝐊22 − 𝐐22)] −
1
2𝜎21

tr(𝐊11 − 𝐐11),

(2.79)

where we write ̄p(𝐟1 |𝐮1) = 𝒩 (𝐟1 |𝝁1, 𝜎21 I) to incorporate the Gaussian noise in the
latent space. Due to our assumption that 𝐮1 is a sufficient statistic for 𝐟1 we choose the
Gaussians

q(𝐟1 |𝐮1) = ̄p(𝐟1 |𝐮1), and

q(𝐟1) = ∫ ̄p(𝐟1 |𝐮1) q(𝐮1) d𝐮1,
(2.80)

and use another variational approximation to marginalize 𝐮1. This yields

log p(𝐟2 |𝐮2) = log∫ p(𝐟2, 𝐮1 |𝐮2) d𝐮1

= log∫ p(𝐟2 |𝐮2, 𝐮1) p(𝐮1) d𝐮1

≥ ∫ q(𝐮1) log
p(𝐟2 |𝐮2, 𝐮1) p(𝐮1)

q(𝐮1)
d𝐮1

= 𝔼q(𝐮1)[log p(𝐟2 |𝐮1, 𝐮2)] − KL(q(𝐮1) ‖ p(𝐮1))

≥ 𝔼q(𝐮1)[𝔼 ̄p(𝐟1|𝐮1)[log p̄(𝐟2 |𝐮2, 𝐟1)]] − KL(q(𝐮1) ‖ p(𝐮1))

− 1
2𝜎21

tr(𝐊11 − 𝐐11) − 𝔼q(𝐮1)[𝔼 ̄p(𝐟1|𝐮1)[
1
2𝜎22

tr(𝐊22 − 𝐐22)]]

≥ 𝔼q(𝐟1)[log ̄p(𝐟2 |𝐮2, 𝐟1)], −KL(q(𝐮1) ‖ p(𝐮1))

− 1
2𝜎21

tr(𝐊11 − 𝐐11) −
1
2𝜎22

𝔼q(𝐟1)[tr(𝐊22 − 𝐐22)],

(2.81)

where we apply Fubini’s theorem [46] to exchange the order of integration in the
expected values. The expectations with respect to q(𝐟1) involve expectations of kernel

55

Chapter 2 Preliminaries

matrices, also called Ψ-statistics, in the same way as in [32] and are given by

𝜓2 = 𝔼q(𝐟1)[tr(𝐊𝐟2𝐟2)],
𝚿𝟐 = 𝔼q(𝐟1)[𝐊𝐟2𝐮2],
𝚽𝟐 = 𝔼q(𝐟1)[𝐊𝐮2𝐟2𝐊𝐟2𝐮2].

(2.82)

These Ψ-statistics can be computed analytically for multiple kernels, including the
squared exponential kernel. To obtain the final formulation of the desired bound for
log p(𝐟2 |𝐮2) we substitute (2.82) into (2.81) and get the analytically tractable bound

log p(𝐟2 |𝐮2) ≥ log𝒩(𝐟2 |𝚿2𝐊
−1
𝐮2𝐮2𝐦2, 𝜎22 I) − KL(q(𝐮1) ‖ p(𝐮1))

− 1
2𝜎21

tr(𝐊11 − 𝐐11) −
1
2𝜎22

(𝜓2 − tr(𝚿𝟐𝐊
−1
𝐮2𝐮2))

− 1
2𝜎22

tr ((𝚽2 − 𝚿T
2𝚿2) 𝐊

−1
𝐮2𝐮2 (𝐦2𝐦

T
2 + 𝐒2) 𝐊

−1
𝐮2𝐮2) .

(2.83)

This bound is structurally similar to the SVGP bound in (2.73) but contains additional
terms introduced by the propagation of uncertainties from p(𝐟1). To derive a variational
bound for (2.77) where all 𝐟𝑙 have been marginalized, we can apply the same steps
as described above recursively, resulting in the nested variational compression lower
bound given by

ℒNVC ≥

log𝒩(𝐲|𝚿𝐿𝐊
−1
𝐮𝐿𝐮𝐿𝐦𝐿, 𝜎2𝑛 I) −

𝐿
∑
𝑙=1

KL(q(𝐮𝑙) ‖ p(𝐮𝑙))

− 1
2𝜎21

tr(𝐊11 − 𝐐11) −
𝐿
∑
𝑙=2

1
2𝜎2𝑙

(𝜓𝑙 − tr(𝚿𝐥𝐊
−1
𝐮𝑙𝐮𝑙))

−
𝐿
∑
𝑙=2

1
2𝜎2𝑙

tr ((𝚽𝑙 − 𝚿T
𝑙𝚿𝑙) 𝐊

−1
𝐮𝑙𝐮𝑙 (𝐦𝑙𝐦

T
𝑙 + 𝐒𝑙) 𝐊

−1
𝐮𝑙𝐮𝑙) .

(2.84)

Just as the SVGP bound, it factorizes along the data and enables stochastic optimization.
However, depending on the kernel, the calculation of psi-statistics can be computation-
ally expensive or analytically intractable, limiting the applicability of this bound to a
limited set of hierarchical GP models.

Since the nested variational compression bound introduces a conditional independence
assumption between layers given the approximations of the latent variables q(𝐟𝑙),
approximate predictions can be derived by recursively calculating q(𝐟1) to q(𝐟𝐿), all

56

2.7 Hierarchical Gaussian Processes

of which are Gaussian. Given inputs 𝐗∗, we recursively marginalize the intermediate
layers

q(𝐟𝑙 ,∗) = ∫ q(𝐟𝑙 ,∗, 𝐟𝑙−1,∗) d𝐟𝑙−1,∗

= ∫ q(𝐟𝑙 ,∗ | 𝐟𝑙−1,∗) q(𝐟𝑙−1,∗) d𝐟𝑙−1,∗

= 𝔼q(𝐟𝑙−1,∗)[q(𝐟𝑙 ,∗ | 𝐟𝑙−1,∗)]

= 𝒩 (𝐟𝑙 ,∗ | ̄𝝁𝑙 ,∗, �̄�𝑙 ,∗)

(2.85)

with

̄𝝁𝑙 ,∗ = 𝚿𝑙∗𝐊
−1
𝐮𝑙𝐮𝑙𝐦𝑙

�̄�𝐥,∗ = 𝚿𝑙∗𝐊
−1
𝐮𝑙𝐮𝑙𝐒𝑙𝐊

−1
𝐮𝑙𝐮𝑙𝚿

T
𝑙∗.

For the first layer, the expectation collapses to usual SVGP predictions. The final
function values are given by q(𝐟𝐿). While passing Gaussian variational messages
through a deep GP to achieve conditional independence between layers is computa-
tionally convenient, it is a strong simplification as propagating a Gaussian distribution
through a Gaussian process generally does not result in a Gaussian distribution. As
discussed in more detail in [57], nested variational compression tends to underestimate
uncertainties, especially when the functions 𝑓𝑙 become more non-linear.

Doubly Stochastic Variational Inference

To overcome some of the limitations of nested variational compression, Salimbeni
et al. [94] proposed the doubly stochastic variational inference (DSVI) approximation.
Instead of relying on an explicit variational approximation for the 𝐟𝑙, DSVI is based
on the observation that due to the conditional independence assumption of the data
introduced by the 𝐮𝑙, function values 𝐟𝑛,𝑙 can be sampled independently and efficiently.
Under the SVGP variational sufficient statistics assumptions, the posterior of a single
GP can be written as

q(𝐟𝑙 | 𝐟𝑙−1) = ∫ q(𝐮𝑙) p(𝐟𝑙 |𝐮𝑙, 𝐟𝑙−1) d𝐮𝑙

= ∫ q(𝐮𝑙)
𝑁
∏
𝑛=1

p(𝐟𝑙 ,𝑛 |𝐮𝑙, 𝐟𝑙−1,𝑛) d𝐮𝑙,
(2.86)

57

Chapter 2 Preliminaries

which can be evaluated analytically, since it is a convolution of Gaussians. For the
hierarchical case, we choose the same variational independence assumptions as in the
NVC approximation above

q(𝐟1, 𝐮1, … , 𝐟𝐿, 𝐮𝐿) =
𝐿
∏
𝑙=1

p(𝐟𝑙 |𝐮𝑙, 𝐟𝑙−1) q(𝐮𝑙). (2.87)

The factorization along the data still holds in the variational hierarchical case. We
can formulate the marginal function value of the 𝑛th data point by inserting (2.86)
into (2.77) to obtain

q(𝐟𝐿,𝑛) = ∫
𝐿−1
∏
𝑙=1

q(𝐟𝑙 ,𝑛 | 𝐟𝑙−1,𝑛) d𝐟𝑙 ,𝑛

= ∫
𝐿−1
∏
𝑙=1

∫ q(𝐮𝑙) p(𝐟𝑙 ,𝑛 |𝐮𝑙, 𝐟𝑙−1,𝑛) d𝐮𝑙 d𝐟𝑙 ,𝑛.

(2.88)

A consequence of this formulation is that drawing a sample from q(𝐟𝐿,𝑛) can be achieved
via ancestral sampling through the hierarchical GP model by drawing samples from
the different q(𝐟𝑙 ,𝑛) in turn. Instead of passing Gaussian messages as in the NVC
approximation, we can draw Monte-Carlo samples from q(𝐟𝐿,𝑛) directly. Because the
data are independent under the variational assumptions, we can draw independent
univariate samples per observation. Sampling q(𝐟𝐿,𝑛) directly also allows us to sample
the bound in (2.65) that generalizes to the hierarchical case and is given by

ℒDSVI ≥
𝑁
∑
𝑛=1

𝔼q(𝐟𝐿,𝑛)[log p(𝐲𝑛 | 𝐟𝐿,𝑛)] −
𝐿
∑
𝑙=1

KL(q(𝐮𝑙) ‖ p(𝐮𝑙)). (2.89)

Evaluating this bound requires 𝒪(𝑁𝑀2𝐷) computations. Through local reparametriza-
tion [70], the gradients of the variational bound can be sampled directly. Evaluations of
the DSVI-bound and its gradients have two unbiased sources of stochasticity [94]. First,
the expected likelihood is approximated through Monte Carlo samples and second,
since the likelihood factorizes along the data, mini-batching is possible. Drawing sam-
ples of the likelihood directly elimates the need for Psi-statistics as in (2.84), making
DSVI applicable to a broader set of hierarchical Gaussian process models.

Monte Carlo samples of approximate predictions can be drawn using (2.88) as well.
The free-form predictive density can be approximated using the mixture

q(𝐟𝐿,∗ |𝐗∗) ≈
1
𝑆

𝑆
∑
𝑠=1

q(𝐪𝐿,∗ |𝐮𝐿, 𝐟𝐿−1,∗), (2.90)

with 𝑆 samples propagated through the hierarchical GP starting from the 𝐗∗.

58

Chapter 3

Data Association

The deep Gaussian processes introduced in Section 2.7 are motivated with practical
machine learning considerations: It is hard to represent some functions of interest
with a standard GP with a smooth prior, most notably functions which have non-
smooth components. By repeatedly warping the input space, a deep GP can represent
nonstationary structure through the repeated application of smooth functions. In such
a deep GP model, only the joint application of all smooth layers is informative as the
separation is not driven through domain assumptions or a generative process. In the
following, we explore problems for which a hierarchical structure can be formulated
and learn explicit and separate posteriors for the different parts of the hierarchy.

Real-world data often include multiple operational regimes of the considered system,
for example, a wind-turbine or gas turbine [55]. As an example, consider a model
describing the lift resulting from airflow around the wing profile of an airplane as a
function of the attack angle. At low values, the lift increases linearly with the attack
angle until the wing stalls, and the characteristic of the airflow changes fundamentally.
Building a truthful model of such data requires learning two separate models and
correctly associating the observed data to each of the dynamical regimes. A similar
example arises if our sensors that measure the lift are faulty in a manner such that we
either get an accurate reading or a noisy one. Estimating a model in this scenario is
often referred to as a data association problem [8, 30]. where we consider the data to
have been generated by a mixture of processes. We are interested in factorizing the
data into these components.

Figure 3.1 shows an example of faulty sensor data, where sensor readings are dis-
turbed by uncorrelated and asymmetric noise. Applying standard machine learning
approaches to such data can lead to model pollution, where the expressive power
of the model is used to explain noise instead of the underlying signal. Solving the
data association problem by factorizing the data into signal and noise gives rise to a
principled approach to avoid this behavior.

59

Chapter 3 Data Association

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5

0

2

𝐗

𝐲

Figure 3.1: A data association problem consisting of two generating processes, one of which
is a signal we wish to recover and one is an uncorrelated noise process.

Early approaches to explaining data using multiple generative processes are based
on separating the input space and training local expert models explaining easier sub-
tasks [61, 86, 115]. The assignment of data points to local experts is handled by a
gating network, which learns a function from the inputs to assignment probabilities.
However, it is still a central assumption of these models that at every position in the
input space, exactly one expert should explain the data. Another approach is presented
in [12], where the multimodal regression tasks are interpreted as a density estimation
problem. A high number of candidate distributions is reweighed to match the observed
data without modeling the underlying generative process.

In contrast, we are interested in a generative process, where data at the same location in
the input space could have been generated by a number of global independent processes.
Inherently, the data association problem is ill-posed and requires assumptions on both
the underlying functions and the association of the observations. In [75] the authors
place GP priors on the different generative processes which are assumed to be relevant
globally. The associations are modeled via a latent association matrix, and inference is
carried out using an expectation-maximization algorithm. This approach takes both
the inputs and the outputs of the training data into account to solve the association
problem. A drawback is that the model cannot give a posterior estimate about the
relevance of the different generating processes at different locations in the input space.
This means that the model can be used for data exploration, but additional information
is needed to perform predictive tasks. Another approach in [15] expands this model by
allowing interdependencies between the different generative processes and formulating
the association problem as an inference problem on a latent space and a corresponding
covariance function. However, in this approach, the number of components is a
free parameter and is prone to overfitting, as the model has no means of turning off
components.

60

3.1 Data Association with Gaussian Processes

N

K

𝐱𝑛

𝐲𝑛

𝐟 (𝑘)𝑛

𝐲(𝑘)
𝑛

𝜶 (𝑘)
𝑛

𝐚𝑛

𝜽 (𝑘)

𝐮(𝑘)

𝝈 (𝑘)

𝜽 (𝑘)
𝛼

𝐮(𝑘)
𝛼

Figure 3.2: The graphical model of DAGP. The violet observations (𝐱𝑛, 𝐲𝑛) are generated by
the latent process (green). Exactly one of the 𝐾 latent functions 𝑓 (𝑘) and likelihood 𝐲(𝑘)

𝑛 are
evaluated to generate 𝐲𝑛. We can place shallow or deep GP priors on these latent function
values 𝐟 (𝑘)𝑛 . The assignment 𝐚𝑛 to a latent function is driven by input-dependent weights 𝜶 (𝑘)

𝑛
which encode the relevance of the different functions at 𝐱𝑛. The different parts of the model
are determined by the hyperparameters 𝜽, 𝝈 (yellow) and variational parameters 𝐮 (blue).

In this chapter, we formulate a Bayesian model for the data association problem.
Underpinning our approach is the use of GP priors that encode structure both on the
functions and the associations themselves, allowing us to incorporate the available
prior knowledge about the proper factorization into the learning problem. The use of
GP priors allows us to achieve principled regularization without reducing the solution
space leading to a well-regularized learning problem. Importantly, we simultaneously
solve the association problem for the training data taking both inputs and outputs
into account while also obtaining posterior belief about the relevance of the different
generating processes in the input space. Our model can describe non-stationary
processes in the sense that a different number of processes can be activated in different
locations in the input space. We describe this non-stationary structure using additional
GP priors, which allows us to make full use of problem-specific knowledge. This leads
to a flexible yet interpretable model with a principled treatment of uncertainty.

61

Chapter 3 Data Association

3.1 Data Association with Gaussian Processes

The data association with Gaussian processes (DAGP) model assumes that there exist 𝐾
independent functions {𝑓 (𝑘)}𝐾𝑘=1, which generate pairs of observations𝒟 = {(𝐱𝑛, 𝐲𝑛)}

𝑁
𝑛=1.

Each data point is generated by evaluating one of the 𝐾 latent functions and adding
Gaussian noise from a corresponding likelihood. The assignment of the 𝑛th data point
to one of the functions is specified by the indicator vector 𝐚𝑛 ∈ {0, 1}𝐾, which has
exactly one non-zero entry. Our goal is to formulate simultaneous Bayesian inference
on the functions 𝑓 (𝑘) and the assignments 𝐚𝑛.

For notational conciseness, we follow the GP related notation in [59] and collect all 𝑁
inputs as 𝐗 = (𝐱1, … , 𝐱𝑁) and all outputs as 𝐘 = (𝐲1, … , 𝐲𝑁). We further denote the
𝑘th latent function value associated with the 𝑛th data point as 𝐟 (𝑘)𝑛 = 𝑓 (𝑘)(𝐱𝑛) and collect
them as 𝐅(𝑘) = (𝐟 (𝑘)1 , … , 𝐟 (𝑘)𝑁) and 𝐅 = (𝐅(1), … , 𝐅(𝐾)). We refer to the 𝑘th entry in 𝐚𝑛 as 𝑎(𝑘)𝑛
and denote 𝐀 = (𝐚1, … , 𝐚𝑁).

Given this notation, the marginal likelihood of DAGP can be separated into the likeli-
hood, the latent function processes, and the assignment process and is given by,

p(𝐘 |𝐗) = ∫ p(𝐘 |𝐅, 𝐀) p(𝐅 |𝐗) p(𝐀 |𝐗) d𝐀 d𝐅

p(𝐘 |𝐅, 𝐀) =
𝑁
∏
𝑛=1

𝐾
∏
𝑘=1

𝒩(𝐲𝑛 | 𝐟
(𝑘)
𝑛 , (𝜎 (𝑘))2)

𝕀(𝑎(𝑘)𝑛 =1)
,

(3.1)

where 𝜎 (𝑘) is the noise of the 𝑘th Gaussian likelihood and 𝕀 is the indicator function.

Since we assume the 𝐾 processes to be independent given the data and assignments,
we place independent GP priors on the latent functions

p(𝐅 |𝐗) =
𝐾
∏
𝑘=1

𝒩(𝐅(𝑘) | 𝜇(𝑘)(𝐗), k(𝑘)(𝐗, 𝐗)) (3.2)

withmean function 𝜇(𝑘) and kernel k(𝑘). Our prior on the assignment process is composite.
First, we assume that the 𝐚𝑛 are drawn independently from multinomial distributions
with logit parameters 𝜶𝑛 = (𝛼 (1)

𝑛 , … , 𝛼 (𝐾)
𝑛). One approach to specifying 𝜶𝑛 is to assume

them to be known a priori and to be equal for all data points [75]. Instead, we want to
infer them from the data. Specifically, we assume that there is a relationship between
the location in the input space x and the associations. By placing independent GP
priors on 𝜶 (𝑘), we can encode our prior knowledge of the associations via the choice

62

3.2 Variational Approximation

of the covariance function p(𝜶 |𝐗) = ∏𝐾
𝑘=1𝒩(𝜶 (𝑘) | 𝟎, k(𝑘)

𝛼 (𝐗, 𝐗)). The prior on the
assignments 𝐀 is given by marginalizing the 𝜶 (𝑘), which, when normalized, parametrize
a batch of multinomial distributions,

p(𝐀 |𝐗) = ∫ℳ(𝐀|softmax(𝜶)) p(𝜶 |𝐗) d𝜶. (3.3)

Modelling the relationship between the input and the associations allows us to effi-
ciently model data, which, for example, is unimodal in some parts of the input space
and bimodal in others. A simple smoothness prior will encode a belief for how quickly
the components switch across the input domain.

Since the GPs of the 𝜶 (𝑘) use a zero mean function, our prior assumption is a uniform
distribution of the different generative processes everywhere in the input space. If
inference on the 𝐚𝑛 reveals that, say, all data points at similar positions in the input
space can be explained by the same 𝑘th process, the belief about 𝜶 can be adjusted
to make a non-uniform distribution favorable at this position, thereby increasing the
likelihood via p(𝐀 |𝐗). This mechanism introduces an incentive for the model to use
as few functions as possible to explain the data, and, importantly, allows us to predict
the relative importance of these functions when calculating the posterior of the new
observations 𝐱∗.

Figure 3.2 shows the resulting graphical model, which divides the generative process
for every data point in the application of the latent functions on the left side and the
assignment process on the right side. The interdependencies between the data points
are introduced through the GP priors on 𝐟 (𝑘)𝑛 and 𝜶 (𝑘)

𝑛 and depend on the hyperparameters

𝜽 = {𝜽 (𝑘), 𝜽 (𝑘)
𝛼 , 𝜎 (𝑘)}

𝐾
𝑘=1. The priors for the 𝑓 (𝑘) can be chosen independently to encode

different prior assumptions about the underlying processes. In Section 3.3, we use
different kernels to separate a non-linear signal from a noise process. Going further,
we can also use deep GP as priors for the 𝑓 (𝑘) [32, 94].

3.2 Variational Approximation

Exact inference is intractable in this model. Instead, we formulate a variational approx-
imation based on the doubly stochastic variational inference scheme from Section 2.7.
Because of the rich structure in our model, finding a variational lower bound which is
both faithful and can be evaluated analytically is hard. To proceed, we formulate an ap-
proximation which factorizes along both the 𝐾 processes and 𝑁 data points. This bound

63

Chapter 3 Data Association

can be sampled efficiently and allows us to optimize both the models for the different
processes {𝑓 (𝑘)}𝐾𝑘=1 and our belief about the data assignments {𝐚𝑛}

𝑁
𝑛=1 simultaneously

using stochastic optimization.

Variational Lower Bound

As discussed in Section 2.6, we augment all GPs in our model using sets of 𝑀 inducing
points 𝐙(𝑘) = (𝐳(𝑘)1 , … , 𝐳(𝑘)𝑀) and their corresponding function values 𝐮(𝑘) = 𝑓 (𝑘)(𝐙(𝑘)),

the inducing variables. We collect them as 𝐙 = {𝐙(𝑘), 𝐙(𝑘)
𝛼 }

𝐾
𝑘=1 and 𝐔 = {𝐮(𝑘), 𝐮(𝑘)

𝛼 }
𝐾
𝑘=1.

Taking the function 𝑓 (𝑘) and its corresponding GP as an example, the inducing variables
𝐮(𝑘) are jointly Gaussian with the latent function values 𝐅(𝑘) of the observed data by
the definition of GPs. We follow (2.58) and choose the variational approximation
q(𝐅(𝑘), 𝐮(𝑘)) = p(𝐅(𝑘) |𝐮(𝑘), 𝐗, 𝐙(𝑘)) q(𝐮(𝑘))with q(𝐮(𝑘)) = 𝒩 (𝐮(𝑘) |𝐦(𝑘), 𝐒(𝑘)). This formulation
introduces the set {𝐙(𝑘), 𝐦(𝑘), 𝐒(𝑘)} of variational parameters indicated in Figure 3.2. To
simplify notation, we drop the dependency on 𝐙 in the following.

A central assumption of this approximation is that given enough well-placed inducing
variables 𝐮(𝑘), they are a sufficient statistic for the latent function values 𝐅(𝑘). This
implies conditional independence of the 𝐟 (𝑘)𝑛 given 𝐮(𝑘) and 𝐗. The variational posterior
of a single GP can then be written as,

q(𝐅(𝑘) |𝐗) = ∫ q(𝐮(𝑘)) p(𝐅(𝑘) |𝐮(𝑘), 𝐗) d𝐮(𝑘)

= ∫ q(𝐮(𝑘))
𝑁
∏
𝑛=1

p(𝐟 (𝑘)𝑛 |𝐮(𝑘), 𝐱𝑛) d𝐮(𝑘),
(3.4)

which can be evaluated analytically, since it is a convolution of Gaussians. This
formulation simplifies inference within single GPs. Next, we discuss how to handle
the correlations between the different functions and the assignment processes.

Given a set of assignments 𝐀, this factorization along the data points is preserved in
our model due to the assumed independence of the different functions in (3.1). This
independence is lost if the assignments are unknown. In this case, both the (a priori
independent) assignment processes and the functions influence each other through
data with unclear assignments. Following the ideas of DSVI in Section 2.7, we maintain
these correlations between different parts of the model while assuming factorization

64

3.2 Variational Approximation

of the variational distribution. That is, our variational posterior takes the factorized
form,

q(𝐅, 𝜶 , 𝐔) = q(𝜶, {𝐅(𝑘), 𝐮(𝑘), 𝐮(𝑘)
𝛼 }

𝐾
𝑘=1)

=
𝐾
∏
𝑘=1

𝑁
∏
𝑛=1

p(𝜶 (𝑘)
𝑛 |𝐮(𝑘)

𝛼 , 𝐱𝑛) q(𝐮
(𝑘)
𝛼)

𝐾
∏
𝑘=1

𝑁
∏
𝑛=1

p(𝐟 (𝑘)𝑛 |𝐮(𝑘), 𝐱𝑛) q(𝐮(𝑘)).
(3.5)

Our goal is to recover a posterior for both the generating functions and the assignment
of data. To achieve this, instead of marginalizing 𝐀, we consider the variational joint
of 𝐘 and 𝐀,

q(𝐘, 𝐀) = ∫ p(𝐘 |𝐅, 𝐀) p(𝐀 |𝜶) q(𝐅, 𝜶) d𝐅 d𝜶, (3.6)

which retains both the Gaussian likelihood of 𝐘 and the multinomial likelihood of 𝐀 in
(3.3). A lower bound ℒDAGP for the log-joint log p(𝐘, 𝐀 |𝐗) of DAGP is given by,

ℒDAGP = 𝔼q(𝐅,𝜶 ,𝐔)[log
p(𝐘, 𝐀, 𝐅, 𝜶 , 𝐔 |𝐗)

q(𝐅, 𝜶 , 𝐔)
]

=
𝑁
∑
𝑛=1

𝔼q(𝐟𝑛)[log p(𝐲𝑛 | 𝐟𝑛, 𝐚𝑛)] +
𝑁
∑
𝑛=1

𝔼q(𝜶𝑛)[log p(𝐚𝑛 |𝜶𝑛)]

−
𝐾
∑
𝑘=1

KL(q(𝐮(𝑘)) ‖ p(𝐮(𝑘) |𝐙(𝑘))) −
𝐾
∑
𝑘=1

KL(q(𝐮(𝑘)
𝛼)‖ p(𝐮(𝑘)

𝛼 |𝐙(𝑘)
𝛼)).

(3.7)

Due to the structure of (3.5), the bound factorizes along the data enabling stochastic
optimization. This bound has complexity 𝒪(𝑁𝑀2𝐾) to evaluate.

Optimization of The Lower Bound

An important property of the variational bound for DSVI is that taking samples for
single data points is straightforward and can be implemented efficiently. Specifically, for
some 𝑘 and 𝑛, samples ̂𝐟 (𝐤)𝐧 from q(𝐟 (𝑘)𝑛) are independent of all other parts of the model and
can be drawn using samples from univariate unit Gaussians using reparametrization [70,
88].

Note that it would not be necessary to sample from the different processes, since
q(𝐅(𝑘)) can be computed analytically [56]. However, we apply the sampling scheme

65

Chapter 3 Data Association

to the optimization of both the assignment processes 𝜶 and the assignments 𝐀. For
𝜶, the analytic propagation of uncertainties through the softmax renormalization and
multinomial likelihoods is intractable, but can be evaluated through sampling.

We optimize ℒDAGP to simultaneously recover maximum likelihood estimates of the
hyperparameters 𝜽, the variational parameters {𝐙,𝐦, 𝐒}, and assignments 𝐀. For every
𝑛, we represent the belief about 𝐚𝑛 as a 𝐾-dimensional discrete distribution q(𝐚𝑛). This
distribution models the result of drawing a sample from ℳ(𝐚𝑛 |softmax(𝜶𝑛)) during
the generation of the data point (𝐱𝑛, 𝐲𝑛).

Since we want to optimize ℒDAGP using (stochastic) gradient descent, we need to
employ a continuous relaxation to gain informative gradients of the bound with respect
to the discrete vectors 𝐚𝑛. One straightforward way to relax the problem is to use the
current belief about q(𝐚𝑛) as parameters for a convex combination of the 𝐟 (𝑘)𝑛 , that is,
to approximate 𝐟𝑛 ≈ ∑𝐾

𝑘=1 q(𝐚
(𝑘)
𝑛) ̂𝐟 (𝑘)𝑛 . Using this relaxation is problematic in practice.

Explaining data points as mixtures of the different generating processes violates the
modeling assumption that every data point was generated using exactly one function
but can substantially simplify the learning problem. Because of this, special care must
be taken during optimization to enforce the sparsity of q(𝐚𝑛).

To avoid this problem, we propose using a different relaxation based on additional
stochasticity. Instead of directly using q(𝐚𝑛) to combine the 𝐟 (𝑘)𝑛 , we first draw a sample
�̂�𝐧 from a concrete random variable as suggested by Maddison et al. [77], parameterized
by q(𝐚𝑛). Based on a temperature parameter 𝜆, a concrete random variable enforces
sparsity but is also continuous and yields informative gradients using automatic differ-
entiation. Samples from a concrete random variable are unit vectors, and for 𝜆 → 0,
their distribution approaches a discrete distribution.

Our approximate evaluation of the bound in (3.7) during optimization has multiple
sources of stochasticity, all of which are unbiased. First, we approximate the expecta-
tions using Monte Carlo samples ̂𝐟 (𝑘)𝑛 , �̂� (𝑘)

𝑛 , and �̂�𝑛. And second, the factorization of the
bound along the data allows us to use mini-batches for optimization [56, 94].

Approximate Predictions

Predictions for a test location 𝐱∗ are mixtures of 𝐾 independent Gaussians, given by,

q(𝐟∗ | 𝐱∗) = ∫
𝐾
∑
𝑘=1

q(𝑎(𝑘)∗ | 𝐱∗) q(𝐟
(𝑘)
∗ | 𝐱∗) d𝐚

(𝑘)
∗ ≈

𝐾
∑
𝑘=1

�̂�(𝑘)∗ ̂𝐟 (𝑘)∗ . (3.8)

66

3.2 Variational Approximation

The predictive posteriors of the 𝐾 functions q(𝐟 (𝑘)∗ | 𝐱∗) are given by 𝐾 independent
shallow GPs and can be calculated analytically using (2.62). Samples from the predictive
density over q(𝐚∗ | 𝐱∗) can be obtained by sampling from the GP posteriors q(𝜶 (𝑘)

∗ | 𝐱∗)
and renormalizing the resulting vector 𝜶∗ using the softmax-function. The distribution
q(𝐚∗ | 𝐱∗) reflects the model’s belief about how many and which of the 𝐾 generative
processes are relevant at the test location 𝐱∗ and their relative probability.

Deep Gaussian Processes

For clarity, we have described the variational bound in terms of a shallow GP. However,
as long as their variational bound can be sampled efficiently, any model can be used
in place of shallow GPs for the 𝑓 (𝑘). Since our approximation is based on DSVI, an
extension to deep GPs is straightforward. Out new prior assumption about the 𝑘th
latent function values p(𝐅′(𝑘) |𝐗) is given by,

p(𝐅′(𝑘) |𝐗) =
𝐿
∏
𝑙=1

p(𝐅′(𝑘)𝑙 |𝐮′(𝑘)𝑙 𝐅′(𝑘)𝑙−1, 𝐙
′(𝑘)
𝑙), (3.9)

for an 𝐿-layer deep GP and with 𝐅′(𝑘)0 ≔ 𝐗. Similar to the single-layer case, we introduce
sets of inducing points 𝐙′(𝑘)𝑙 and a variational distribution over their corresponding
function values q(𝐮′(𝑘)𝑙) = 𝒩 (𝐮′(𝑘)𝑙 |𝐦′(𝑘)

𝑙 , 𝐒′(𝑘)𝑙). We collect the latent multi-layer function

values as 𝐅′ = {𝐅′(𝑘)𝑙 }𝐾,𝐿𝑘=1,𝑙=1 and corresponding 𝐔′ and assume an extended variational
distribution,

q(𝐅′, 𝜶 , 𝐔′) = q(𝜶, {𝐮(𝑘)
𝛼 }

𝐾
𝑘=1, {𝐅

′(𝑘)
𝑙 , 𝐮′(𝑘)𝑙 }

𝐾,𝐿
𝑘=1,𝑙=1)

=
𝐾
∏
𝑘=1

𝑁
∏
𝑛=1

p(𝜶 (𝑘)
𝑛 |𝐮(𝑘)

𝛼 , 𝐱𝑛) q(𝐮
(𝑘)
𝛼)

𝐾
∏
𝑘=1

𝐿
∏
𝑙=1

𝑁
∏
𝑛=1

p(𝐟′(𝑘)𝑛,𝑙 |𝐮
′(𝑘)
𝑙 , 𝐱𝑛) q(𝐮

′(𝑘)
𝑙),

(3.10)

where we identify 𝐟′(𝑘)𝑛 = 𝐟′(𝑘)𝑛,𝐿. As the 𝑛th marginal of the 𝐿th layer depends only on the
𝑛th marginal of all layers above sampling from them remains straightforward [94]. The
marginal is given by,

q(𝐟′(𝑘)𝑛,𝐿) = ∫ q(𝐟′(𝑘)𝑛,𝐿 | 𝐟
′(𝑘)
𝑛,𝐿−1)

𝐿−1
∏
𝑙=1

q(𝐟′(𝑘)𝑛,𝑙 | 𝐟
′(𝑘)
𝑛,𝑙−1) d𝐟

′(𝑘)
𝑛,𝑙 . (3.11)

67

Chapter 3 Data Association

Table 3.1: Comparison of qualitative model capabilities. A model has a capability if it contains
components which could, in principle, solve the respective task.

Predictive
Posterior

Multi-
modal
Data

Scalable
Inference

Inter-
pretable
Priors

Data Asso-
ciation

Predictive
Assoc.

Separate
Models

Experiment Table 3.2 Table 3.3 Figure 3.4

DAGP ✔ ✔ ✔ ✔ ✔ ✔ ✔

OMGP [75] ✔ ✔ – ✔ ✔ – ✔
RGPR [86] ✔ ✔ – ✔ – – –
MLE [115] ✔ – – ✔ – – –
LatentGP [15] ✔ ✔ – ✔ – – –
GPR [87] ✔ – ✔ ✔ – – –

BNN+LV [41] ✔ ✔ ✔ – – – –
MDN [12] ✔ ✔ ✔ – – – –
MLP ✔ – ✔ – – – –

The complete bound is structurally similar to (3.7) and given by,

ℒ ′
DAGP =

𝑁
∑
𝑛=1

𝔼q(𝐟′𝐧)[log p(𝐲𝑛 | 𝐟
′
𝐧, 𝐚𝑛)] +

𝑁
∑
𝑛=1

𝔼q(𝜶𝑛)[log p(𝐚𝑛 |𝜶𝑛)]

−
𝐾
∑
𝑘=1

𝐿
∑
𝑙=1

KL(q(𝐮(𝑘)
𝑙) ‖ p(𝐮

(𝑘)
𝑙 |𝐙(𝑘)

𝑙)) −
𝐾
∑
𝑘=1

KL(q(𝐮(𝑘)
𝛼)‖ p(𝐮(𝑘)

𝛼 |𝐙(𝑘)
𝛼)).

(3.12)

To calculate the first term, samples have to be propagated through the deep GP struc-
tures. This extended bound thus has complexity 𝒪(𝑁𝑀2𝐿𝐾) to evaluate in the general
case and complexity 𝒪(𝑁𝑀2 ⋅max(𝐿, 𝐾)) if the assignments 𝐚𝑛 take binary values.

3.3 Experiments

In this section, we investigate the behavior of the DAGP model. Table 3.1 compares
qualitative properties of DAGP and related work. All models can solve standard
regression problems and yield unimodal predictive distributions or, in case of multi-
layer perceptrons (MLP), a single point estimate. Both standard Gaussian process
regression (GPR) and MLP do not impose structure which enables the models to handle
multi-modal data. Mixture density networks (MDN) [12] and the infinite mixtures of
Gaussian processes (RGPR) [86] model yield multi-modal posteriors through mixtures
with many components but do not solve an association problem. Similarly, Bayesian
neural networks with added latent variables (BNN+LV) [41] represent such a mixture

68

3.3 Experiments

through a continuous latent variable. Both the overlapping mixtures of Gaussian
processes (OMGP) [75] model and DAGP explicitly model the data association problem
and yield independent models for the different generating processes. However, OMGP
assumes global relevance of the different modes. In contrast, DAGP infers a spacial
posterior of this relevance. We evaluate our model on three problems to highlight the
following advantages of the explicit structure of DAGP:

Interpretable priors give structure to ill-posed data association problems. First, we consider
a noise separation problem, where a signal of interest is disturbed with uniform noise.
To solve this problem, assumptions about what constitutes a signal are needed. The
hierarchical structure of DAGP allows us to formulate independent and interpretable
priors on the noise and signal processes.

Predictive associations represent knowledge about the relevance of generative processes. We
then investigate the implicit incentive of DAGP to explain data using as few processes
as possible. Additional to a joint posterior explaining the data, DAGP also gives insight
into the relative importance of the different processes in different parts of the input
space. DAGP can recover the changing number of modes in a data set explicitly.

Separate models for independent generating processes avoid model pollution. Lastly, we
simulate a system with multiple operational regimes via mixed observations of two
different cart-pole systems. DAGP successfully learns an informative joint posterior
by solving the underlying association problem. We show that the DAGP posterior
contains two separate models for the two original operational regimes.

Noise Separation

We consider an experiment based on a noise separation problem. We apply DAGP to a
one-dimensional regression problem with uniformly distributed asymmetric outliers in
the training data. We use a task proposed by Choi et al. [23] wherewe sample 𝑥 ∈ [−3, 3]
uniformly and apply the function 𝑓 (𝑥) = (1 − 𝛿)(cos(𝜋/2 ⋅ 𝑥) exp(−(𝑥/2)2) + 𝛾) + 𝛿 ⋅ 𝜖,
where 𝛿 ∼ ℬ(𝜆), 𝜖 ∼ 𝕌(−1, 3) and 𝛾 ∼ 𝒩 (0, 0.152). That is, a fraction 𝜆 of the training
data, the outliers, are replaced by asymmetric uniform noise. We sample a total of 1000
data points and use 25 inducing points for every GP in our model.

Every generating process in our model can use a different kernel and therefore encode
different prior assumptions. For this setting, we use two processes, one with a squared
exponential kernel and one with a white noise kernel. This choice encodes the problem
statement that every data point is either part of the signal we wish to recover or
uncorrelated noise. To avoid pathological solutions for high outlier ratios, we add a

69

Chapter 3 Data Association

Table 3.2: Results on the ChoiceNet data set. The gray part of the table shows RMSE results
for baseline models from [23]. For our experiments using the same setup, we report RMSE
comparable to the previous results together with MLL. Both are calculated based on a test
set of 1000 equally-spaced samples of the noiseless underlying function.

Outliers DAGP OMGP DAGP OMGP CN MDN MLP GPR RGPR
MLL MLL RMSE RMSE RMSE RMSE RMSE RMSE RMSE

0 % 2.86 2.09 0.008 0.005 0.034 0.028 0.039 0.008 0.017
20 % 2.71 1.83 0.008 0.005 0.022 0.087 0.413 0.280 0.013
40 % 2.12 1.60 0.005 0.007 0.018 0.565 0.452 0.447 1.322
60 % 0.874 1.23 0.031 0.006 0.023 0.645 0.636 0.602 0.738
80 % 0.126 -1.35 0.128 0.896 0.084 0.778 0.829 0.779 1.523

prior to the likelihood variance of the first process, which encodes our assumption that
there actually is a signal in the training data.

The model proposed in [23], called ChoiceNet (CN), is a specific neural network
structure and inference algorithm to deal with corrupted data. In their work, they
compare their approach to theMLP, MDN, GPR, and RGPRmodels. We add experiments
for both DAGP and OMGP. Table 3.2 shows results for outlier rates varied from 0% to
80 %. Besides the root mean squared error (RMSE) reported in [23], we also report the
mean test log-likelihood (MLL).

Since we can encode the same prior knowledge about the signal and noise processes in
both OMGP and DAGP, the results of the two models are comparable: For low outlier
rates, they correctly identify the outliers and ignore them, resulting in a predictive
posterior of the signal equivalent to standard GP regression without outliers. In the
special case of 0 % outliers, the models correctly identify that the process modeling the
noise is not necessary, thereby simplifying to standard GP regression. For high outlier
rates, stronger prior knowledge about the signal is required to still identify it perfectly.
Figure 3.3 shows the DAGP posterior for an outlier rate of 60 %. While the function
has still been identified well, some of the noise is also explained using this process,
thereby introducing slight errors in the predictions.

Multimodal Data

Our second experiment applies DAGP to a multimodal data set. The data, together
with recovered posterior attributions, can be seen in Figure 3.4. We uniformly sample

70

3.3 Experiments

0

2
𝐲

−2 0 2

0

2

𝐗

𝐲

−2 0 2
𝐗

−2 0 2
𝐗

Figure 3.3: DAGP on the ChoiceNet data set with 40 % outliers (upper row) and 60 % outliers
(lower row). We show the raw data (left), joint posterior (center) and assignments (right).
The bimodal DAGP identifies the signal perfectly up to 40 % outliers. For 60 % outliers, some
of the noise is interpreted as signal, but the latent function is still recovered.

350 data points in the interval 𝑥 ∈ [−2𝜋, 2𝜋] and obtain 𝑦1 = sin(𝑥) + 𝜖, 𝑦2 = sin(𝑥) −
2 exp(−1/2 ⋅ (𝑥 −2)2)+𝜖 and 𝑦3 = −1− 3/8𝜋 ⋅ 𝑥 + 3/10 ⋅sin(2𝑥)+𝜖with additive independent
noise 𝜖 ∼ 𝒩 (0, 0.0052). The resulting data set 𝒟 = {(𝑥, 𝑦1) , (𝑥, 𝑦2) , (𝑥, 𝑦3)} is trimodal
in the interval [0, 5] and is otherwise bimodal with one mode containing double the
amount of data than the other.

We use squared exponential kernels as priors for both the 𝑓 (𝑘) and 𝛼 (𝑘) and 25 inducing
points in every GP. Figure 3.4 shows the posterior of a DAGP with 𝐾 = 4modes applied
to the data, which correctly identified the underlying functions. The figure shows the
posterior belief about the assignments 𝐀 and illustrates that DAGP recovered that it
needs only three of the four available modes to explain the data. One of the modes is
only assigned points in the interval [0, 5], where the data is trimodal.

This separation is explicitly represented in the model via the assignment processes
𝜶 (bottom panel in Figure 3.4). Importantly, DAGP does not only cluster the data
with respect to the generating processes but also infers a factorization of the input
space with respect to the relative importance of the different processes. The model has
disabled the mode 𝑘 = 2 in the complete input space and has learned that the mode

71

Chapter 3 Data Association

−10 −8 −6 −4 −2 0 2 4 6 8 10
−4

−2

0

2

𝐗

𝐲

−10 −8 −6 −4 −2 0 2 4 6 8 10
−4

−2

0

2

𝐗

𝐲

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.33

0.66

𝐗

so
ft
m
ax
(𝜶

) 𝜶 (1)

𝜶 (2)

𝜶 (3)

𝜶 (4)

Figure 3.4: The DAGP posterior on an artificial data set with bimodal and trimodal parts. The
joint predictions (top) are mixtures of four Gaussians weighed by the assignment probabilities
𝜶 (bottom). The weights are represented via the opacity of the modes. The model has learned
that the mode 𝑘 = 2 is irrelevant, that the mode 𝑘 = 1 is only relevant around the interval
[0, 5]. Outside this interval, the mode 𝑘 = 3 is twice as likely as the mode 𝑘 = 4. The concrete
assignments 𝐚 (middle) of the training data show that the mode 𝑘 = 1 is only used to explain
observations where the training data is trimodal. The mode 𝑘 = 2 is never used.

72

3.3 Experiments

Table 3.3: Results on the cart-pole data set. We report mean log likelihoods with their
standard error for ten runs. The upper results are obtained by training the model on the
mixed data set and evaluating it jointly (left) on multi-modal predictions. We evaluate the
two inferred sub-models for the default system (center) and short-pole system (right). We
provide gray baseline comparisons with BNN+LV and GPR models which cannot solve the
data assignment problem. BNN+LV yields joint predictions which cannot be separated into
sub-models. Specialized GPR models trained the individual training sets give a measure of
the possible performance if the data assignment problem would be solved perfectly.

Mixed Default only Short-pole only

Train Test Test Test

DAGP 0.575 ± 0.013 0.521 ± 0.009 0.844 ± 0.002 0.602 ± 0.005
DAGP 2 0.548 ± 0.012 0.519 ± 0.008 0.859 ± 0.001 0.599 ± 0.011
DAGP 3 0.527 ± 0.004 0.491 ± 0.003 0.852 ± 0.002 0.545 ± 0.012

OMGP −1.04 ± 0.02 −1.11 ± 0.03 0.66 ± 0.02 −0.81 ± 0.12

BNN+LV 0.519 ± 0.005 0.524 ± 0.005 — —
GPR Mixed 0.452 ± 0.003 0.421 ± 0.003 — —
GPR Default — — 0.867 ± 0.001 −7.54 ± 0.14
GPR Short — — −5.14 ± 0.04 0.792 ± 0.003

𝑘 = 1 is only relevant in the interval [0, 5], where the three enabled modes explain
about a third of the data each. Outside this interval, the model has learned that one of
the modes has about twice the assignment probability than the other one, thus correctly
reconstructing the true generative process. The DAGP is implicitly incentivized to
explain the data using as few modes as possible through the likelihood term of the
inferred 𝐚𝑛 in (3.7). At 𝑥 = −10, the inferred modes and assignment processes start
reverting to their respective priors away from the data.

Mixed Cart-Pole Systems

Our third experiment is based on the cart-pole benchmark for reinforcement learning as
described by Barto et al. [9] and implemented in OpenAI Gym [20]. In this benchmark,
the objective is to apply forces to a cart moving on a frictionless track to keep a pole,
which is attached to the cart via a joint, in an upright position. We consider the
regression problem of predicting the change of the pole’s angle given the current
state of the cart and the action applied. The current state of the cart consists of the

73

Chapter 3 Data Association

cart’s position and velocity and the pole’s angular position and velocity. To simulate
a dynamical system with changing system characteristics our experimental setup is
to sample trajectories from two different cart-pole systems and merging the resulting
data into one training set. The task is not only to learn a model which explains this
data well, but to solve the association problem introduced by the different system
configurations. This task is important in reinforcement learning settings where we
study systems with multiple operational regimes.

We sample trajectories from the system by initializing the pole in an almost upright
position and then applying ten uniform random actions. We add Gaussian noise
𝜖 ∼ 𝒩 (0, 0.012) to the observed angle changes. To increase the non-linearity of the
dynamics, we apply the action for five consecutive time steps and allow the pole to
swing freely instead of ending the trajectory after reaching a specific angle. The data
set consists of 500 points sampled from the default cart-pole system and another 500
points sampled from a short-pole cart-pole system in which we halve the mass of the
pole to 0.05 and shorten the pole to 0.1, a tenth of its default length. This short-pole
system is more unstable, and the pole reaches higher speeds. Predictions in this system,
therefore, have to take the multimodality into account, as mean predictions between
the more stable and the more unstable system can never be observed. We consider
three test sets, one sampled from the default system, one sampled from the short-pole
system, and a mixture of the two. They are generated by sampling trajectories with
an aggregated size of 5000 points from each system for the first two sets and their
concatenation for the mixed set.

For this data set, we use squared exponential kernels for both the 𝑓 (𝑘) and 𝛼 (𝑘) and 100
inducing points in every GP. We evaluate the performance of deep GPs with up to
three layers and squared exponential kernels as models for the different functions.
As described in [65, 94], we use identity mean functions for all but the last layers
and initialize the variational distributions with low covariances. We compare our
models with OMGP and three-layer relu-activated Bayesian neural networks with
added latent variables (BNN+LV). The latent variables can be used to effectively model
multimodalities and stochasticity in dynamical systems for model-based reinforcement
learning [40]. We also compare DAGP to three kinds of sparse GPs (GPR) [59]. They
are trained on the mixed data set, the default system, and the short-pole system, and
serve as a baseline comparison as these models cannot handle multi-modal data.

Table 3.3 shows results for ten runs of these models. The GPR model predicts a
unimodal posterior for the mixed data set that covers both systems. Its mean prediction
is approximately the mean of the two regimes and is physically implausible. The DAGP
and BNN+LV models yield informative multi-modal predictions with comparable

74

3.3 Experiments

−4

−2

0

2

𝐲

−4

−2

0

2

𝐲

−4

−2

0

2

𝐲

−4

−2

0

2

𝐲

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7
−4

−2

0

2

𝐗

𝐲

Figure 3.5: Different solutions to the multimodal experiment obtained through retraining.
All models explain the data equally well and are plausible under the prior. The upper two
models can be considered more interpretable because their solution to the data association
problem is more intuitive for experts.

75

Chapter 3 Data Association

performance. In our setup, OMGP could not successfully solve the data association
problem and thus does not produce a useful joint posterior. The OMGP’s inference
scheme is tailored to ordered one-dimensional problems. It does not trivially translate
to the 4D cart-pole problem.

As BNN+LV does not explicitly solve the data association problem, the model does not
yield sub-models for the two different systems. Similar results would be obtained with
the MDN and RGPR models, which also cannot be separated into sub-models. OMGP
and DAGP yield such sub-models which can independently be used for predictions in
the default or short-pole systems. Samples drawn from these models can be used to
generate physically plausible trajectories in the respective system. OMGP fails to model
the short-pole system but does yield a viable model for the default system that evolves
more slowly due to higher torque and is therefore easier to learn. In contrast, the
two sub-models inferred by DAGP perform well on their respective systems, showing
that DAGP reliably solves the data association problem and successfully avoids model
pollution by separating the two systems well. Given this separation, shallow and deep
models for the two modes show comparable performance. The more expressive deep
GPs model the default system slightly better while sacrificing performance on the more
difficult short-pole system.

3.4 Discussion

We have presented a fully Bayesian model for the data association problem. Our model
factorizes the observed data into a set of independent processes and provides a model
for both the processes and data assignments. The data association problem is inherently
ill-constrained and requires significant assumptions to recover a solution. We make
use of interpretable GP priors allowing global a priori information to be included in
the model. Importantly, our model can exploit information both about the underlying
functions and the association structure. We have derived a principled approximation to
the marginal likelihood, which allows us to perform inference for flexible hierarchical
processes.

We have shown how explicitly formulating the hierarchical generative process of the
data association problem and deriving explicit posteriors for the different components
leads to an expressive model. This model allows us to formulate expert knowledge
about different modes or mode associations to facilitate training. At the same time,
predictions of model components can be used to solve a multitude of tasks in Table 3.1,
which cannot be solved by models that collapse parts of the generative process.

76

3.4 Discussion

In the noise separation task, data is assigned to two modes which differ on a qualitative
level: The noise mode with high uncertainty and a constant prediction can explain
any data point, but at the same time, data points have a low likelihood. The mode
representing the function of interest can be placed where data is densest and explains
the data with high confidence and thus high likelihood. The qualitative difference also
allows to model to recognize if there is no noise at all, as explaining all data using the
more informative mode is always beneficial.

The multimodal experiments show that the model still performs well when more ambi-
guity is introduced. In this case, all modes share the same prior and are interchangeable.
Due to the incentive to use as few modes as possible, DAGP still correctly identifies
that three modes are enough to explain the data in Figure 3.4. More specifically, at
any point 𝐗, at most three modes are active. Due to the RBF GP prior, the functions
identified by the three modes vary slowly and thus, data close together tends to be
explained by the same mode.

The deep GP variational approximation and thus the derived approximation for DAGP
assumes independence between the layers. An important effect of this assumption is
that a DAGP posterior cannot represent interchangeable modes since this would require
dependence between 𝐅 and 𝜶. Instead, early on during training of a DAGP instance,
the model (randomly) assigns modes of the model 𝐟 (𝑘) to modes in the underlying data.
Figure 3.4 shows one such association, Figure 3.5 shows other results obtained through
retraining. All models explain the data equally well and are plausible under the prior
that prefers no more than 3 smooth modes to be active for any 𝐗, which is the case
for all models. The predictive posterior p(𝐟∗ | 𝐱∗) is comparable for all models which
perform equally well with respect to test metrics. However, the lower three models
in Figure 3.5 could be considered less interpretable or less desirable because data which
intuitively should belong to the same mode does not.

In the DAGP model, these qualitatively different solutions cannot be distinguished
automatically but can only be identified through inspection by experts. While the
predictive posterior close to the data is similar, the different solutions could generalize
differently, introducing a subjective choice of what constitutes the correct model. In the
next chapter, we explore how this ambiguity can be removed by introducing a prior on
the dependence between modes through structured informed by expert knowledge.

77

Chapter 4

Non-Linear Time-Series Alignment

In Chapter 3, we used hierarchically structured Gaussian processes to solve a data
association problem. We exploited the conditional independence between modes given
associations to formulate an efficient variational approximation. The dependence
between modes introduced through uncertain associations was handled through com-
ponents that learn expected associations and an explicit posterior for the training
data. However, while the different modes in the DAGP model are independent in
the true generative process, they might not be independent in a Bayesian posterior
due to insufficient information. Assuming independence anyway is the core simpli-
fying assumption in the variational approximation. In this chapter, we explore how
dependencies in multimodal models can be represented explicitly in a hierarchical
structure.

Many real-world systems are inherently hierarchical and connected. Ideally, a machine
learning method should model and recognize such dependencies. Take wind power
production, which is one of the major providers for renewable energy today, as an
example: To optimize the efficiency of a wind-turbine, the speed and pitch have to be
controlled according to the local wind conditions (speed and direction). In a wind-farm,
turbines are typically equipped with sensors for wind speed and direction. The goal
is to use these sensor data to produce accurate estimates and forecasts of the wind
conditions at every turbine in the farm. For the ideal case of a homogeneous and
very slowly changing wind field, the wind conditions at each geometrical position in
a wind-farm can be estimated using the propagation times (time warps) computed
from geometry, wind speed, and direction [14, 95, 106]. In the real world, however,
wind fields are not homogeneous, exhibit global and local turbulence, and interfere
with the turbines and the terrain inside and outside the farm and further, sensor faults
may lead to data loss. This makes it extremely difficult to construct accurate analytical
models of wind propagation in a farm. Also, standard approaches for extracting such
information from data, for example generalized time warping [125], fail at this task

79

Chapter 4 Non-Linear Time-Series Alignment

because they rely on a high signal to noise ratio. Instead, we want to construct Bayesian
nonlinear dynamic data-based models for wind conditions and warpings which handle
the stochastic nature of the system in a principled manner.

In this chapter, we look at a generalization of this type of problem and propose a novel
Bayesian approach to finding nonlinear alignments of time-series based on latent shared
information. We view the power production of different wind-turbines as the outputs
of a multi-output Gaussian process (MO-GP) [4, 17] that models the latent wind fronts.
We embed this model in a hierarchy, adding a layer of non-linear alignments on top and
a layer of non-linear warpings [74, 102] below which increases flexibility and encodes
the original generative process. We show how the resulting model can be interpreted
as a group of deep Gaussian processes with the added benefit of covariances between
different outputs. The imposed structure is used to formulate prior knowledge in a
principled manner, restrict the representational power to physically plausible models,
and recover the desired latent wind fronts and relative alignments. The presented
model can be interpreted as a group of 𝐷 deep GPs, all of which share one layer that is
a MO-GP. This MO-GP acts as an interface to share information between the different
GPs that are otherwise conditionally independent.

4.1 Aligned Multi-Output Gaussian Processes

We are interested in formulating shared priors over a set of functions {𝑓𝑑}𝐷𝑑=1 using
GPs, thereby directly parameterizing their interdependencies. In a traditional GP
setting, multiple outputs are considered conditionally independent given the inputs,
which significantly reduces the computational cost but also prevents the utilization
of shared information. Such interdependencies can be formulated via convolution
processes (CPs) as proposed by Alvarez et al. [2], Alvarez et al. [3], and Boyle et al.
[18], a generalization of the linear model of coregionalization (LMC) [25, 64]. In the CP
framework, the output functions are the result of a convolution of the latent processes
𝑤𝑟 with smoothing kernel functions 𝑇𝑑,𝑟 for each output 𝑓𝑑, defined as

𝑓𝑑(𝐱) =
𝑅
∑
𝑟=1

∫𝑇𝑑,𝑟(𝐱 − 𝐳) ⋅ 𝑤𝑟(𝐳) d𝐳. (4.1)

In this model, the convolutions of the latent processes generating the different outputs
are all performed around the same point 𝐱. We generalize this by allowing different
alignments of the observations that depend on the position in the input space. This
allows us to model the changing relative interaction times for the different latent wind

80

4.1 Aligned Multi-Output Gaussian Processes

𝐦𝑎
𝑑

𝐦𝑓
𝑑

𝐦𝑔
𝑑

𝐗𝑑

𝐚𝑑

𝐟𝑑

𝐠𝑑

𝐲𝑑

𝐗𝑑′

𝐚𝑑′

𝐟𝑑′

𝐠𝑑′

𝐲𝑑′

𝐦𝑎
𝑑′

𝐦𝑓
𝑑′

𝐦𝑔
𝑑′

𝐰1

...

𝐰𝑅

Figure 4.1: The graphical model of AMO-GP. A convolution process, informed by 𝑅 latent
processes, models shared information between multiple data sets with nonlinear alignments
and warpings. The shared information connects 𝐷 deep GPs through a shared layer.

fronts, as described in the introduction. We also assume that the dependent functions
𝑓𝑑 are latent themselves, and the data we observe is generated via independent noisy
nonlinear transformations of their values. Every function 𝑓𝑑 is augmented with an
alignment function 𝑎𝑑 and a warping 𝑔𝑑 on which we place independent GP priors.

For simplicity, we assume that the outputs are evaluated all at the same positions
𝐗 = {𝐱𝑛}𝑁𝑛=1. This can easily be generalized to different input sets for every output. In
our application, the 𝐱𝑛 are one-dimensional time indices. However, since the model
can be generalized to multi-dimensional inputs, we do not restrict ourselves to the
one-dimensional case. We note that in the multi-dimensional case, reasoning about
priors on alignments can be challenging. We call the observations associated with the
𝑑-th function 𝐲𝑑 and use the stacked vector 𝐲 = (𝐲1, … , 𝐲𝐷) to collect the data of all
outputs. The final model is then given by

𝐲𝑑 = 𝑔𝑑(𝑓𝑑(𝑎𝑑(𝐗))) + 𝝐𝑑, (4.2)

where 𝝐𝑑 ∼ 𝒩 (0, 𝜎2𝑦,𝑑I) is a noise term. The functions are applied element-wise. This
encodes the generative process described above: For every turbine 𝐲𝑑, observations at
positions 𝐗 are generated by first aligning to the latent wind fronts using 𝑎𝑑, applying
the front in 𝑓𝑑, imposing turbine-specific components 𝑔𝑑 and adding noise in 𝝐𝑑.

81

Chapter 4 Non-Linear Time-Series Alignment

0 1

0

1
𝐗

𝐚

0 1

0

1
𝐗

𝐚

0 1

-1

1
𝐚

𝐟

-1 1

-1

1
𝐟

𝐠1

-1 1

-1

1
𝐟

𝐠2

0 1
-1

1

𝐗

𝐲1

0 1
-1

1

𝐗

𝐲2

Figure 4.2: An artificial example of hierarchical composite data with multiple observations of
shared latent information. This hierarchy generates two data sets using a dampened sine
function which is never observed directly.

We assume independence between 𝑎𝑑 and 𝑔𝑑 across outputs and apply GP priors of the
form 𝑎𝑑 ∼ 𝒢𝒫 (id, 𝑘𝑎,𝑑) and 𝑔𝑑 ∼ 𝒢𝒫 (id, 𝑘𝑔,𝑑). By setting the prior mean to the identity
function id(𝑥) = 𝑥, the standard CP model is our default assumption. During learning,
the model can choose the different 𝑎𝑑 and 𝑔𝑑 in a way to reveal the independent shared
latent processes {𝑤𝑟}𝑅𝑟=1 on which we also place GP priors 𝑤𝑟 ∼ 𝒢𝒫 (0, 𝑘𝑢,𝑟). Similar
to Boyle et al. [18], we assume the latent processes to be independent white noise
processes by setting cov[𝑤𝑟(𝐳), 𝑤𝑟 ′(𝐳′)] = 𝛿𝑟 𝑟 ′𝛿𝐳𝐳′ . Under this prior, the 𝑓𝑑 are also GPs
with zero mean and

cov[𝑓𝑑(𝐱), 𝑓𝑑′(𝐱′)] =
𝑅
∑
𝑟=1

∫𝑇𝑑,𝑟(𝐱 − 𝐳)𝑇𝑑′,𝑟(𝐱′ − 𝐳) d𝐳. (4.3)

Using the squared exponential kernel for all 𝑇𝑑,𝑟, the integral has a closed-form solution.
With {𝜎𝑑,𝑟, ℓ𝑑,𝑟} denoting the kernel hyper parameters associated with 𝑇𝑑,𝑟, it is given
by

cov[𝑓𝑑(𝐱), 𝑓𝑑′(𝐱′)] =
𝑅
∑
𝑟=1

(2𝜋)
𝐾
2 𝜎𝑑,𝑟 𝜎𝑑′,𝑟

∏𝐾
𝑘=1 ℓ̂

−1
𝑑,𝑑′,𝑟 ,𝑘

exp(−1
2

𝐾
∑
𝑘=1

(𝑥𝑘 − 𝑥′𝑘)
2

ℓ̂2𝑑,𝑑′,𝑟 ,𝑘
), (4.4)

where 𝐱 is 𝐾-dimensional and ℓ̂𝑑,𝑑′,𝑟 ,𝑘 = √ℓ
2
𝑑,𝑟 ,𝑘 + ℓ2𝑑′,𝑟 ,𝑘.

82

4.2 Variational Approximation

4.2 Variational Approximation

Since exact inference in thismodel is intractable, we present a variational approximation
to the model’s marginal likelihood in this section. Analogously to 𝐲, we denote the
random vectors which contain the function values of the respective functions and
outputs as 𝐚 and 𝐟. The joint probability distribution of the data can then be written
as

p(𝐲, 𝐟, 𝐚 |𝐗) = p(𝐟 |𝐚)
𝐷
∏
𝑑=1

p(𝐲𝐝 | 𝐟𝐝) p(𝐚𝐝 |𝐗), with

𝐚𝐝 | 𝐗 ∼ 𝒩 (𝐗, 𝐊𝐚,𝐝 + 𝜎2𝑎,𝑑I),

𝐟 | 𝐚 ∼ 𝒩 (𝟎, 𝐊𝐟 + 𝜎2𝑓 I),

𝐲𝐝 | 𝐟𝐝 ∼ 𝒩 (𝐟𝐝, 𝐊𝐠,𝐝 + 𝜎2𝑦,𝑑I).

(4.5)

Here, we use 𝐊 to refer to the Gram matrices corresponding to the respective GPs. All
but the convolution processes factorize over the different levels of the model as well as
the different outputs.

To approximate a single deepGP, we can use the approximations discussed in Section 2.7.
The structure of the AMO-GP model is closely related to a group of stacked GPs with
additional dependencies in one of the layers. Since these dependencies are represented
with amulti-output GP that, given the latent functions, yields conditionally independent
outputs, nested variation compression generalizes to the AMO-GP. The variational
lower bound for the AMO-GP is given by

log p(𝐲 |𝐗, 𝐙, 𝐮) ≥
𝐷
∑
𝑑=1

log𝒩(𝐲𝐝 |𝚿𝐠,𝐝𝐊
−1
𝐮𝐠,𝐝𝐮𝐠,𝐝𝐦𝐠,𝐝, 𝜎2𝑦,𝑑I) −

𝐷
∑
𝑑=1

1
2𝜎2𝑎,𝑑

tr(𝚺𝐚,𝐝)

− 1
2𝜎2𝑓

(𝜓𝑓 − tr(𝚽𝐟𝐊
−1
𝐮𝐟𝐮𝐟)) −

𝐷
∑
𝑑=1

1
2𝜎2𝑦,𝑑

(𝜓𝑔,𝑑 − tr(𝚽𝐠,𝐝𝐊
−1
𝐮𝐠,𝐝𝐮𝐠,𝐝))

−
𝐷
∑
𝑑=1

KL(q(𝐮𝐚,𝐝) ‖ p(𝐮𝐚,𝐝)) − KL(q(𝐮𝐟) ‖ p(𝐮𝐟)) −
𝐷
∑
𝑑=1

KL(q(𝐮𝐲,𝐝) ‖ p(𝐮𝐲,𝐝))

− 1
2𝜎2𝑓

tr ((𝚽𝐟 − 𝚿T
𝐟𝚿𝐟) 𝐊

−1
𝐮𝐟𝐮𝐟 (𝐦𝐟𝐦

T
𝐟 + 𝐒𝐟) 𝐊

−1
𝐮𝐟𝐮𝐟)

−
𝐷
∑
𝑑=1

1
2𝜎2𝑦,𝑑

tr ((𝚽𝐠,𝐝 − 𝚿T
𝐠,𝐝𝚿𝐠,𝐝)𝐊

−1
𝐮𝐠,𝐝𝐮𝐠,𝐝 (𝐦𝐠,𝐝𝐦

T
𝐠,𝐝 + 𝐒𝐠,𝐝)𝐊

−1
𝐮𝐠,𝐝𝐮𝐠,𝐝) .

(4.6)

83

Chapter 4 Non-Linear Time-Series Alignment

The bound contains one Gaussian fit term per output dimension and a series of regular-
ization terms for every GP in the hierarchy. The KL-divergences connect the variational
approximations to the prior, and the different trace terms regularize the variances of
the different GPs. For a detailed discussion see [57]. This bound depends on the
hyper parameters of the kernel and likelihood {ℓ, 𝝈} and the variational parameters
{𝐙𝑙 ,𝑑, 𝐦𝑙 ,𝑑, 𝐒𝑙 ,𝑑 | 𝑙 ∈ {𝐚, 𝐟, 𝐝}, 𝑑 ∈ [𝐷]}.

The bound can be calculated in 𝒪(𝑁𝑀2) time and factorizes along the data points,
enabling stochastic optimization. Since every of the𝑁 data points is associated with one
of the 𝐷 outputs, the computational cost of the model is independent of 𝐷. Information
is only shared between the different outputs using the inducing points in 𝐟. As the
different outputs share a common function, increasing𝐷 allows us to reduce the number
of variational parameters per output and still represent the shared information.

A central component of this bound are expectations over kernel matrices, the three
Ψ-statistics 𝜓𝑓 = 𝔼q(𝐚)[tr(𝐊𝐟𝐟)], 𝚿𝐟 = 𝔼q(𝐚)[𝐊𝐟𝐮] and 𝚽𝐟 = 𝔼q(𝐚)[𝐊𝐮𝐟𝐊𝐟𝐮]. Closed-form
solutions for these statistics depend on the choice of kernel and are known for specific
kernels, such as linear or RBF kernels, for example shown in [32]. In the following
subsection, we will give closed-form solutions for these statistics required in the shared
CP-layer of our model.

Convolution Kernel Expectations

The uncertainty about the first layer is captured by the variational distribution of the
latent alignments 𝐚 given by q(𝐚) ∼ 𝒩 (𝝁𝑎, 𝚺𝑎), with 𝐚 = (𝐚1, … , 𝐚𝑑). Every aligned
point in 𝐚 corresponds to one output of 𝐟 and ultimately to one of the 𝐲𝑑. Since the
closed form of the multi output kernel depends on the choice of outputs, we will use
the notation ̂𝑓 (𝐚𝑛) to denote 𝑓𝑑(𝐚𝑛) such that 𝐚𝑛 is associated with output 𝑑.

For notational simplicity, we only consider the case of one single latent process 𝑤𝑟.
Since the latent processes are independent, the results can easily be generalized to
multiple processes. Then, 𝜓𝑓 is given by

𝜓𝑓 = 𝔼q(𝐚)[tr(𝐊𝐟𝐟)]

=
𝑁
∑
𝑛=1

𝔼q(𝐚𝑛)[cov[
̂𝑓 (𝐚𝑛), ̂𝑓 (𝐚𝑛)]]

=
𝑁
∑
𝑛=1

�̂�2𝑛𝑛.

(4.7)

84

4.2 Variational Approximation

Similar to the notation ̂𝑓 (⋅), we use �̂�𝑛𝑛′ to denote the variance term associated with the
covariance function cov[̂𝑓 (𝐚𝑛), ̂𝑓 (𝐚𝑛′)]. The expectation 𝚿𝐟 = 𝔼q(𝐚)[𝐊𝐟𝐮] connecting
the alignments and the pseudo inputs is given by

𝚿𝐟 = 𝔼q(𝐚)[𝐊𝐟𝐮], with

(𝚿𝐟)𝑛𝑖 = ∫ cov[̂𝑓 (𝐚𝑛), ̂𝑓 (𝐙𝑖)] q(𝐚𝑛) d𝐚𝑛

= �̂�2𝑛𝑖
√

(𝚺𝑎)−1𝑛𝑛
ℓ̂𝑛𝑖 + (𝚺𝑎)−1𝑛𝑛

⋅ exp (−1
2

(𝚺𝑎)
−1
𝑛𝑛ℓ̂𝑛𝑖

(𝚺𝑎)−1𝑛𝑛 + ℓ̂𝑛𝑖
((𝝁𝑎)𝑛 − 𝐙𝑖)

2)

(4.8)

where ℓ̂𝑛𝑖 is the combined length scale corresponding to the same kernel as �̂�𝑛𝑖. Lastly,
𝚽𝐟 = 𝔼q(𝐚)[𝐊𝐮𝐟𝐊𝐟𝐮] connects alignments and pairs of pseudo inputs with the closed
form

𝚽𝐟 = 𝔼q(𝐚)[𝐊𝐮𝐟𝐊𝐟𝐮], with

(𝚽𝐟)𝑖𝑗 =
𝑁
∑
𝑛=1

∫ cov[̂𝑓 (𝐚𝑛), ̂𝑓 (𝐙𝑖)] ⋅ cov[̂𝑓 (𝐚𝑛), ̂𝑓 (𝐙𝑗)] q(𝐚𝑛) d𝐚𝑛

=
𝑁
∑
𝑛=1

�̂�2𝑛𝑖�̂�2𝑛𝑗
√

(𝚺𝑎)−1𝑛𝑛
ℓ̂𝑛𝑖 + ℓ̂𝑛𝑗 + (𝚺𝑎)−1𝑛𝑛

⋅ exp (−1
2

ℓ̂𝑛𝑖ℓ̂𝑛𝑗
ℓ̂𝑛𝑖 + ℓ̂𝑛𝑗

(𝐙𝑖 − 𝐙𝑗)2

− 1
2
(𝚺𝑎)

−1
𝑛𝑛(ℓ̂𝑛𝑖 + ℓ̂𝑛𝑗)

(𝚺𝑎)−1𝑛𝑛 + ℓ̂𝑛𝑖 + ℓ̂𝑛𝑗
⋅ ((𝝁𝑎)𝑛 −

ℓ̂𝑛𝑖𝐙𝑖 + ℓ̂𝑛𝑗𝐙𝑗
ℓ̂𝑛𝑖 + ℓ̂𝑛𝑗

)
2

) .

(4.9)

Note that the Ψ-statistics factorize along the data, and we only need to consider the
diagonal entries of 𝚺𝑎. If all the data belong to the same output, the Ψ-statistics of the
standard squared exponential kernel can be recovered as a special case. It is used to
propagate the uncertainties through the output-specific warpings 𝐠.

Approximate Predictions

Using the variational lower bound in (4.6), our model can be fitted to data, resulting in
appropriate choices of the kernel hyper-parameters and variational parameters. Now
assume we want to predict approximate function values 𝐠𝑑,∗ for previously unseen
points 𝐗𝑑,∗ associated with output 𝑑, which are given by 𝐠𝑑,∗ = 𝑔𝑑(𝑓𝑑(𝑎𝑑(𝐗𝑑,∗))).

Because of the conditional independence assumptions in the model, other outputs
𝑑′ ≠ 𝑑 only have to be considered in the shared layer 𝐟. In this shared layer, the

85

Chapter 4 Non-Linear Time-Series Alignment

belief about the different outputs and the shared information and is captured by the
variational distribution q(𝐮𝑓). Given q(𝐮𝑓), the different outputs are conditionally
independent of one another, and thus, predictions for a single dimension in our model
are equivalent to predictions in a single deep GP with nested variational compression.

4.3 Model Interpretation

The graphical model of the aligned multi-output Gaussian process model (AMO-GP) in
Figure 4.1 illustrates that the presented model can be interpreted as a group of 𝐷 deep
GPs all of which share one layer which is a CP. This CP acts as an interface to share
information between the different GPs that are otherwise conditionally independent.
This modeling-choice introduces a new quality to themodel when compared to standard
deep GPs with multiple output dimensions since the latter cannot learn dependencies
between the different outputs. Compared to standard multi-output GPs, the AMO-GP
introduces more flexibility with respect to the shared information. CPs make strong
assumptions about the relative alignments of the different outputs, that is, they assume
constant time-offsets. The AMO-GP extends this by introducing a principled Bayesian
treatment of general nonlinear alignments 𝑎𝑑 on which we can place informative priors
derived from the problem at hand. Together with the warping layers 𝑔𝑑, our model can
learn to share knowledge in an informative latent space learned from the data.

Alternatively, this model can be interpreted as a shared and warped latent variable
model with a very specific prior: The indices 𝐗 are part of the prior for the latent space
𝑎𝑑(𝐗) and specify a sense of order for the different data points 𝐲 which is augmented
with uncertainty by the alignment functions. Using this order, the convolution pro-
cesses enforce the covariance structure for the different datapoints specified by the
smoothing kernels.

In order to derive an inference scheme, we need the ability to propagate uncertainties
about the correct alignments and latent shared information through subsequent layers.
We adapted the approach of nested variational compression by Hensman et al. [57],
which is originally concerned with a single deep GP. The approximation is expanded
to handle multiple GPs at once, yielding the bound in (4.6). The bound reflects the de-
pendencies of the different outputs as the sharing of information between the different
deep GPs is approximated through the shared inducing variables 𝐮𝑓 ,𝑑.

86

4.4 Experiments

4.4 Experiments

In this section we show how to apply the AMO-GP to the task of finding the common
structure in time-series observations. In this setting, we observe multiple time-series
𝒯𝑑 = (𝐗𝑑, 𝐲𝑑) and assume that there exist latent time-series which determine the
observations.

Wewill first apply the AMO-GP to an artificial data set in whichwe define a decomposed
system of dependent time-series by specifying a shared latent function generating the
observations together with relative alignments and warpings for the different time-
series. We will show that our model can recover this decomposition from the training
data and compare the results to other approaches of modeling the data. Then we focus
on a real-world data set of a neighboring pair of wind-turbines in a wind-farm, where
the model can recover a representation of the latent prevailing wind condition and the
relative timings of wind fronts at the two turbines.

Artificial Data Set

Our data set consists of two time-series 𝒯1 and 𝒯2 generated by a dampened sine
function.

𝑓 ∶ {
[0, 1] → ℝ

𝑥 ↦ (1 − 3
4
tanh (10𝜋

15
⋅ 𝑥)) ⋅ sin(10𝜋 ⋅ 𝑥).

(4.10)

We choose the alignment of 𝒯1 and the warping of 𝒯2 to be the identity in order to
prevent us from directly observing the latent function and apply a sigmoid warping
to 𝒯1. The alignment of 𝒯2 is selected to be a quadratic function. Figure 4.2 shows a
visualization of this decomposed system of dependent time-series. To obtain training
data, we uniformly sampled 500 points from the two time-series and added Gaussian
noise. We subsequently removed parts of the training sets to explore the generalization
behavior of our model, resulting in |𝒯1| = 450 and |𝒯2| = 350.

We use this setup to train our model using squared exponential kernels both in the
conditionally independent GPs 𝐚𝑑 and 𝐠𝑑 and as smoothing kernels in 𝐟. We can always
choose one alignment and one warping to be the identity function to constrain the
shared latent spaces 𝐚 and 𝐟 and provide a reference the other alignments and warpings
will be relative to. Since we assume our artificial data simulates a physical system,
we apply the prior knowledge that the alignment and warping processes have slower

87

Chapter 4 Non-Linear Time-Series Alignment

0 1

-1

1
𝐟

0 1

-1

1

𝐗 𝐗

𝐲1 𝐲2

-1

1
𝐲1

0 1
-1

1

𝐗

𝐲2

(a) Shallow GP with RBF kernel.

0 1

-1

1
𝐟

0 1

-1

1

𝐗 𝐗

𝐲1 𝐲2

-1

1
𝐲1

0 1
-1

1

𝐗

𝐲2

(b) Multi-Output GP with dependent RBF kernel.

0 1

-2

2
𝐗

𝐚

0 1

-2

2
𝐗

-2 2

-5

5

𝐟

-2 2

-5

5

-3 3

-1

1
𝐠1

-3 3

-1

1
𝐠2

-1

1
𝐲1

0 1
-1

1

𝐗

𝐲2

(c) Deep GP with RBF kernels.

0 1

-2

2
𝐗

𝐚

0 1

-1.5

2.5
𝐗

-2 2

-2

4

𝐟

-2 2

-1.5

2.5

-2 4

-1

1
𝐠1

-1.5 2.5

-1

1
𝐠2

-1

1
𝐲1

0 1
-1

1

𝐗

𝐲2

(d) AMO-GP with (dependent) RBF kernels.

Figure 4.3: A comparison of the AMO-GP with other GP models. The plots show mean
predictions and a shaded area of two standard deviations. If available, the ground truth is
displayed as a dashed line. Additional lines are noiseless samples drawn from the model.
The shallow and deep GPs in Figures 4.3a and 4.3c model the data independently and revert
back to the prior in 𝐲2. Because of the nonlinear alignment, a multi-output GP cannot model
the data in Figure 4.3b. The AMO-GP in Figure 4.3d recovers the alignment and warping
and shares information between the two outputs.

88

4.4 Experiments

dynamics compared to the shared latent function that should capture most of the
observed dynamics. To this end we applied priors to the 𝐚𝑑 and 𝐠𝑑 that prefer longer
length scales and smaller variances compared to 𝐟. Otherwise, the model could easily
get stuck in local minima like choosing the upper two layers to be identity functions
and model the time-series independently in the 𝐠𝑑. Additionally, our assumption of
identity mean functions prevents pathological cases in which the complete model
collapses to a constant function.

Figure 4.3d shows the AMO-GP’s recovered function decomposition and joint predic-
tions. The model successfully recovered a shared latent dampened sine function, a
sigmoid warping for the first time-series, and an approximate quadratic alignment
function for the second time-series. In Figures 4.3a to 4.3c, we show the training results
of a standard GP, a multi-output GP and a three-layer deep GP on the same data. For
all of these models, we used RBF kernels and, in the case of the deep GP, applied
priors similar to our model to avoid pathological cases. In Table 4.1 we report test
log-likelihoods for the presented models, which illustrate the qualitative differences be-
tween the models. Because all models are non-parametric and converge well, repeating
the experiments with different initializations leads to very similar likelihoods.

Both the standard GP and deep GP cannot learn dependencies between time-series
and revert to the prior where no data is available. The deep GP has learned that two
layers are enough to model the data, and the resulting model is essentially a Bayesian
warped GP that has identified the sigmoid warping for 𝒯1. Uncertainties in the deep
GP are placed in the middle layer areas where no data are available for the respective
time-series, as sharing information between the two outputs is impossible. In contrast
to the other two models, the multi-output GP can and must share information between
the two time-series. As discussed in Section 4.1 however, it is constrained to constant
time-offsets and cannot model the nonlinear alignment in the data. Because of this,
the model cannot recover the latent sine function and can only model one of the two
outputs.

Pairs of Wind-Turbines

This experiment is based on real data recorded from a pair of neighboring wind-turbines
in a wind-farm. The two time-series 𝒯1 and 𝒯2 shown in gray in Figure 4.5 record
the respective power generation of the two turbines over the course of one and a half
hours, which was smoothed slightly using a rolling average over 60 seconds. There
are 5400 data points for the first turbine (blue) and 4622 data points for the second
turbine (green). We removed two intervals (drawn as dashed lines) from the second

89

Chapter 4 Non-Linear Time-Series Alignment

Table 4.1: Test-log-likelihoods for the models presented in Section 4.4.

Experiment Test set GP MO-GP DGP AMO-GP
(Ours)

Artificial [0.7, 0.8] ⊆ 𝒯1 -0.12 -0.053 0.025 1.54
[0.35, 0.65] ⊆ 𝒯2 -0.19 -5.66 -0.30 0.72

Wind [40, 45] ⊆ 𝒯2 -4.42 -2.31 -1.80 -1.43
[65, 75] ⊆ 𝒯2 -7.26 -0.73 -1.93 -0.69

turbine’s data set to inspect the behavior of the model with missing data. This allows
us to evaluate and compare the generative properties of our model in Figure 4.4.

The power generated by a wind-turbine is mainly dependent on the speed of the wind
fronts interacting with the turbine. For system identification tasks concerned with the
behavior of multiple wind-turbines, associating the observations on different turbines
due to the same wind fronts is an important task. However, it is usually not possible to
directly measure these correspondences or wind propagation speeds between turbines,
which means that there is no ground truth available. An additional problem is that the
shared latent wind conditions are superimposed by turbine-specific local turbulence.
Since these local effects are of comparable amplitude to short-term changes of wind
speed, it is challenging to decide which parts of the signal to explain away as noise
and which part to identify as the underlying shared process.

Our goal is the simultaneous learning of the uncertain alignment in time 𝐚 and of the
shared latent wind condition 𝐟. Modeling the turbine-specific parts of the signals is not
the objective, so they need to be explained by the Gaussian noise term. We use a squared
exponential kernel as a prior for the alignment functions 𝐚𝑑 and as smoothening kernels
in 𝐟. For the given data set, we can assume the output warpings 𝐠𝑑 to be linear functions
because there is only one dimension, the power generation, which in this data set is of
similar shape for both turbines. Again we encode a preference for alignments with
slow dynamics with a prior on the length scales of 𝐚𝑑. As the signal has turbine-specific
autoregressive components, plausible alignments are not unique. To constrain the
AMO-GP, we want it to prefer alignments close to the identity function that we chose
as a prior mean function.

In non-hierarchical models, this can be achieved by placing a prior on the kernel’s
variance, preferring smaller 𝜎2𝑎 . In our case, the posterior space of the alignment
process 𝐚 is a latent space on which we have not placed any prior. The model can
choose the posterior distribution of 𝐮𝑎 in a way to counteract the constrained scale of

90

4.4 Experiments

39 47

0.6

0.8

1

1.2

𝐗 [min]

𝐲 2
[M

W
]

(a) Samples from a GP.

39 47

0.6

0.8

1

1.2

𝐗 [min]

𝐲 2
[M

W
]

(b) Samples from a MO-GP.

39 47

0.6

0.8

1

1.2

𝐗 [min]

𝐲 2
[M

W
]

(c) Samples from a DGP.

39 47

0.6

0.8

1

1.2

𝐗 [min]

𝐲 2
[M

W
]

(d) Samples from the AMO-GP.

Figure 4.4: A comparison of noiseless samples drawn from a GP, a MO-GP, a DGP and the
AMO-GP. The separation of uncertainties implied by the model structure of AMP-GP gives
rise to an informative model. Since the uncertainty in the generative process is mainly
placed in the relative alignment shown in Figure 4.5, all samples in Figure 4.4d resemble the
underlying data in structure.

𝐊𝐚𝐮 and 𝐊−1
𝐮𝐮 and thereby circumvent the prior. To prevent this, we also place a prior

on the mean of 𝐮𝑎 to remove this degree of freedom.

Figure 4.5 shows the joint model learned from the data in which 𝑎1 is chosen to be
the identity function. The identified alignments match the physical conditions of the
wind-farm. For the given turbines, time offsets of up to six minutes are plausible, and
for most wind conditions, the offset is expected to be close to zero. For areas where the
alignment is quite certain, however, the two time-series are explained with comparable
detail. The model can recover unambiguous associations well and successfully places
high uncertainty on the alignment in areas where multiple explanations are plausible
due to the noisy signal.

91

Chapter 4 Non-Linear Time-Series Alignment

0.4

0.8

1.2

𝐲 1
[M

W
]

−7.5

0

7.5

Δ𝐗
[m

in
]

0 15 30 45 60 75 90
0.4

0.8

1.2

𝐗 [min]

𝐲 2
[M

W
]

Figure 4.5: The joint posterior for two time-series 𝐲1 and 𝐲2 of power production for a pair of
wind-turbines. The top and bottom plots show the two observed time-series with training
data and dashed missing data. The AMO-GP recovers an uncertain relative alignment of
the two time-series shown in the middle plot. Note that the sign chance in the alignment
signifies a change in prevailing wind conditions. High uncertainty about the alignment is
placed in areas where multiple explanations are plausible due to the high noise or missing
data.

92

4.4 Experiments

As expected, the uncertainty about the alignment also grows where data for the second
time-series is missing. This uncertainty is propagated through the shared function
and results in higher predictive variances for the second time-series. Because of
the factorization in the model, however, we can recover the uncertainties about the
alignment and the shared latent function separately. Figure 4.4 compares samples drawn
from our model with samples drawn from a GP, a MO-GP and a DGP. The GP reverts to
their respective priors when data is missing, while the MO-GP does not handle short-
term dynamics and smoothens the signal enough such that the nonlinear alignment
can be approximated as constant. Samples drawn from a DGP model showcase the
complexity of a DGP prior. Unconstrained composite GPs are hard to reason about and
make the model very flexible in terms of representable functions. Since the model’s
evidence is very broad, the posterior is uninformed, and inference is hard. Additionally,
as discussed in Section 4.2 and [57], the nested variational compression bound tends to
loosen with high uncertainties. AMO-GP shows richer structure: Due to the constraints
imposed by the model, more robust inference leads to a more informed model. Samples
show that it has learned that a maximum which is missing in the training data has
to exist somewhere, but the uncertainty about the correct alignment due to the local
turbulence means that different samples place the maximum at different locations in
𝐗-direction.

In Figures 4.6 and 4.7, we compare joint predictions and the variational approximations
for different model types in the wind example. Similar to the artificial data set, we
show a standard GP in Figure 4.6a, a multi-output GP in Figure 4.6b, a deep GP in
Figure 4.7a and AMO-GP in Figure 4.7b. All models were trained until convergence,
and multiple runs result in very similar models. For all models, we used RBF kernels
or dependent RBF kernels where applicable. Each plot shows the data in gray and two
mean predictions and uncertainty bands. The first violet uncertainty band is the result
of the variational approximation of the respective model. The second green or blue
posterior is obtained via sampling. For both the GP and MO-GP, we used the SVGP
approximation, and since the models are shallow, the approximation is almost exact.

Figure 4.7a showcases the difficulty of training a deep GP model and the shortcomings
of the nested variational compression. The violet variational approximation is used for
training and approximates the data comparatively well. As discussed above, the deep
GP cannot share information, so the test sets cannot be predicted. The approximation
tends to underestimate uncertainties when propagating them through the different
layers, and because of this, uncertainties obtained via sampling vary considerably more.
Only the variational approximation is considered for model selection. Because the deep
GP is highly underspecified, the variational bound is very loose. The posterior obtained
via ancestral sampling through the deep GP is considerably different and uninformative

93

Chapter 4 Non-Linear Time-Series Alignment

0.4

0.8

1.2
𝐲 𝟏

[M
W
]

0 15 30 45 60 75 90

0.4

0.8

1.2

𝐗 [min]

𝐲 𝟐
[M

W
]

(a) GP

0.4

0.8

1.2

𝐲 𝟏
[M

W
]

0 15 30 45 60 75 90
0.4

0.8

1.2

𝐗 [min]

𝐲 𝟐
[M

W
]

(b) MO-GP

Figure 4.6: Comparison of joint predictions (blue and green) and the variational approximations
(violet). Both the GP and MO-GP are shallow models and the variational approximations are
tight.

94

4.4 Experiments

0.4
0.8
1.2

𝐲 𝟏
[M

W
]

0 15 30 45 60 75 90

0.4
0.8
1.2

𝐗 [min]

𝐲 𝟐
[M

W
]

(a) DGP

0.4

0.8

1.2

𝐲 𝟏
[M

W
]

0 15 30 45 60 75 90

0.4

0.8

1.2

𝐗 [min]

𝐲 𝟐
[M

W
]

(b) AMO-GP (Ours)

Figure 4.7: Comparison of joint predictions (blue and green) and the variational approximations
(violet). The DGP model has few constraints and the variational bound is very loose. The
knowledge encoded in AMO-GP leads to a more informed and thighter approximation.

95

Chapter 4 Non-Linear Time-Series Alignment

as a result. Our approach has the same problem as the deep GP in principle in that the
variational bound could become very loose. However, the structure of the hierarchy
imposed through an interpretable generative process ensures that the different layers
in the AMO-GP model distinct parts of the learning problem. As a result, the model
avoids degenerate solutions, and the variational approximation is closer to the true
posterior. The posteriors tend to disagree more in places when there is high uncertainty
about the alignment.

4.5 Discussion

We have proposed the warped and aligned multi-output Gaussian process (AMO-GP),
in which MO-GPs are embedded in a hierarchy to find shared structure in latent spaces.
We extended convolution processes [18] with conditionally independent Gaussian
processes on both the input and output sides, giving rise to a highly structured deep
GP model. This structure can be used to both regularize the model and encode expert
knowledge about specific parts of the system. By applying nested variational compres-
sion [57] to inference in these models, we presented a variational lower bound which
combines Bayesian treatment of all parts of the model with scalability via stochastic
optimization.

We compared the model with GPs, deep GPs and multi-output GPs on an artificial
data set and showed how the richer model-structure allows the AMO-GP to pick up
on latent structure which the other approaches cannot model. We then applied the
AMO-GP to real-world data of two wind-turbines and used the proposed hierarchy
to model wind propagation in a wind-farm and recover information about the latent
non-homogeneous wind field. With uncertainties decomposed along the hierarchy,
our approach handles ambiguities introduced by the stochasticity of the wind in a
principled manner. This indicates the AMO-GP is a good approach for these kinds
of dynamical systems, where multiple misaligned sensors measure the same latent
effect.

We have shown how limitations in the independence assumptions of hierarchical
GP approximations in Chapter 3 can be overcome by introducing dependence in the
generative process. By modeling this dependence through a multi-output GP, we can
derive an explicit posterior belief about how multimodal data interact. We have shown
in Figure 4.4 that this belief leads to a rich structure in the samples drawn from a
hierarchical model. It allows us to formulate priors that specify which aspects of a
dynamical system should be inferred. However, we also observe that the structure of

96

4.5 Discussion

samples drawn from themodel is only considered indirectly during training through the
marginal likelihood. Similarly, the concrete shape of different model components is only
influenced through the prior, and a semantically correct model cannot be recognized.
Similar to how a correct data association is subjective, the correct alignment of time-
series is subjective and subject to the problem domain.

In the next chapter, we explore how this subjectivity can be incorporated into the model
itself. First, we will formulate a hierarchical structure for a problem in which model
components can be immediately linked to system behavior and thus be interpreted
by domain experts. Secondly, we not only seek to capture the generative process
underlying a dataset but also incorporate the task the model will solve into model
selection. Taking a reinforcement learning problem as an example, we show that
semantic hierarchical structure increases data efficiency and allows domain experts to
influence agent behavior through detailed insights into the dynamics of a system.

97

Chapter 5

Interpretable Reinforcement Learning

In Chapter 4, we formulated a hierarchically structured Gaussian process model to
uncover latent information shared between multimodal time-series. We showed how
this dependence both removes ambiguities in a learning problem and leads to more
informative posteriors. While comparisons to less semantic generative models showed
similar behavior on training data, we showed that a more informed model shows
more desirable generalization behaviors. In a regression problem, the evaluation of
desirable behavior is usually limited to the inspection of marginal distributions at test
points and manual inspection of samples. In this chapter, we explore how we can
formalize desirable model behavior through the task a model will be used to solve. We
formulate a hierarchical model based on the DAGP model in Chapter 3 that is informed
by abstract knowledge about a dynamic system and evaluate model behavior through
a reinforcement learning task. We show that while misspecified models yield similar
marginal distributions as discussed in the previous chapter, a well-specified model can
solve the posed task significantly better.

Machine learning methods are designed to solve tasks where the underlying system
we want to model is only partly known or understood. The hope when using machine
learningmethods is that we can reduce this uncertainty by exploiting statistical patterns
in data generated from the underlying system. Reinforcement learning (RL) [111] is
a machine learning paradigm designed to learn in a dynamic environment where we
can specify a goal or have a notion of what a desirable behavior is. The goal of RL is
to learn a policy that dynamically chooses actions in the environment to achieve a
goal or behavior. Specifically, an RL agent’s task is to learn a policy 𝜋 that, given the
current state 𝐬 of an environment, chooses an action 𝐚 to achieve the goal specified
by a reward function 𝑟 mapping system states to numerical rewards. To learn a policy,
an RL system needs to understand the underlying dynamics governing the system,
how the transition between states is affected by the actions taken. The next state 𝐬′
is determined by the latent and possibly stochastic transition function 𝐬′ = 𝑓(𝐬, 𝐚).

99

Chapter 5 Interpretable Reinforcement Learning

How the dynamical system is treated is one of the main distinctions among different
approaches to RL. In model-based RL, the dynamics model is an explicit part of the
system, while in the model-free counterpart, the transition dynamics are implicit and
cannot be disentangled from the system.

Applying RL in an industrial setting often implies trying to derive an alternative, more
efficient controller for an already existing system. In a critical application, it is unlikely
that we will be able to deploy an untested policy, as this can lead to safety issues.
In practice, we are often limited by previously collected data created by a different,
possibly known, control mechanism in order to learn our model. In the literature, this
scenario is referred to as batch RL [72], where we are presented with a set of state
transitions 𝒟 = {(𝐬𝑛, 𝐚𝑛, 𝐬′𝑛)}𝑁𝑛=1 and are unable to interact with the original system
to find a policy. In order to be able to derive an efficient policy in this scenario, we
need to use the available data as efficiently as possible. Data efficiency in machine
learning comes from reducing the search space of solutions. In other words, data
efficiency arises from being able to exploit as much prior knowledge of the system as
possible [97].

To be able to use the available data as efficiently as possible, we therefore need a model
that provides explicit and interpretable handles such that we can introduce priors easily.
The model-based approach to RL describes each component of the system in a modular
fashion, thereby providing an interface to incorporate prior knowledge. The challenge
is how these priors should be specified, and how they should be included, such that
the hypothesis space can be limited in a manner coherent with our knowledge of the
system.

Gaussian processes (GPs) are stochastic processes that can be used to specify probability
distributions over the space of functions. While a GP specifies a distribution with
support for all functions, it efficiently concentrates its probability mass to functions
with specific characteristics. These characteristics make GPs well suited for RL as
they do not impose hard constraints while still placing a significant structure on the
space of functions. In [36, 37], the authors propose a model-based RL method where
Gaussian processes are used as priors for the dynamics. They provide a principled
approach for taking model uncertainty into account when evaluating the performance
of a policy, thereby reducing the impact of model-bias. However, the approach has
several restrictions: Transition dynamics are modeled as standard Gaussian processes
(GPs), and policies and rewards must be of specific forms.

In this chapter, we show how we can alleviate some of the limitations of [36] to provide
a richer and more efficient RL model. We show how we can introduce additional
constraints on the dynamic model allowing for multiple transitional signatures to be

100

5.1 The Wet-Chicken Benchmark

active simultaneously. Incorporating this knowledge facilitates learning by allowing
us to more precisely state what we want to learn, thereby significantly reducing the
data requirements. Furthermore, decomposing the transition model into several parts
allows us to use reward shaping [111] in order to discourage policies based on dynamic
characteristics.

Introducing constraints on the dynamic model based on abstract knowledge is an inher-
ently problem-dependent process. This work explores this process for the heteroscedas-
tic and bimodal Wet-Chicken benchmark [52, 116] that is both easy to understand and
challenging to model. A central challenge in this benchmark is how to formulate a
model which can represent bimodalities. One approach is presented in [12], where
multimodal regression tasks are interpreted as a density estimation problem. A high
number of candidate distributions are reweighed to match the observed data without
modeling the underlying generative process. Reformulated in a Bayesian framework
using latent variables, this approach has been applied to the Wet-Chicken benchmark
in [40, 41]. However, such models are hard to interpret as they do not yield explicit
models for the different modalities or their relative importance. In this work, we are
interested in formulating a dynamics model which yields new interpretable insights
about the underlying system. We formulate a probabilistic model which contains
such explicit models by interpreting the Wet-Chicken benchmark as a data association
problem [8, 30]. While many probabilistic interpretations of this problem assume that
the relative importance of different modes is constant [15, 75], we base our formulation
on the DAGP model from Chapter 3 which learns a non-parametric model of each
mode and where the associations between the modes themselves is further controlled
by a non-stationary stochastic process.

After introducing the Wet-Chicken benchmark, we show how high-level knowledge
about this system can be used to impose a Bayesian structure. We derive an efficient
inference scheme for both the dynamics model and for probabilistic policy search based
on variational inference. We show that this approach yields interpretable models and
policies and is significantly more data-efficient than less interpretable alternatives.

5.1 The Wet-Chicken Benchmark

In the (two-dimensional) Wet-Chicken problem [52, 116], a canoeist is paddling in a
two-dimensional river. The canoeist’s position at time 𝑡 is given by 𝐬𝑡 = (𝑥𝑡, 𝑦𝑡) ∈ ℝ2,
where 𝑥𝑡 denotes the position along the river and 𝑦𝑡 the position across it. The river
is bounded by its length 𝑙 = 5 and width 𝑤 = 5. There is a waterfall at the end of the

101

Chapter 5 Interpretable Reinforcement Learning

waterfall

Action

waterfall waterfall

Flow

waterfall

waterfall

Turbulence

waterfall waterfall

Drop

waterfall

Figure 5.1: The core components of the 2D wet-chicken benchmark. An agent moves around
a river with the goal to get as close to the waterfall as possible and remain there. At every
time step, the river flows forward non-uniformly and also has a turbulent component. After
falling, the agent restarts at maximum distance to the waterfall.

river at 𝑥 = 𝑙. The canoeist wants to get close to the waterfall to maximize the reward
𝑟(𝐬𝑡) = 𝑟𝑡 = 𝑥𝑡. However, if the canoeist falls down the waterfall, they have to start over
at the initial position (0, 0).

The river’s flow consists of a deterministic velocity 𝑣𝑡 = 3 ⋅ 𝑦𝑡𝑤
−1 and stochastic turbu-

lence 𝑏𝑡 = 3.5 − 𝑣𝑡, both of which depend on the position on the 𝑦-axis. The higher 𝑦𝑡 is,
the faster the river flows, but the less turbulent it becomes. The canoeist chooses his
paddle direction and intensity via an action 𝐚𝑡 = (𝑎𝑡 ,𝑥, 𝑎𝑡 ,𝑦) ∈ [−1, 1]2. The transition

102

5.2 Probabilistic Policy Search

function 𝑓 ∶ (𝐬𝑡, 𝐚𝑡) ↦ 𝐬𝑡+1 = (𝑥𝑡+1, 𝑦𝑡+1) is given by

𝑥𝑡+1 =
⎧
⎨
⎩

0 if �̂�𝑡+1 > 𝑙
0 if �̂�𝑡+1 < 0
�̂�𝑡+1 otherwise

𝑦𝑡+1 =
⎧
⎨
⎩

0 if �̂�𝑡+1 > 𝑙 or ̂𝑦𝑡+1 < 0
𝑤 if ̂𝑦𝑡+1 > 𝑤
̂𝑦𝑡+1 otherwise

(5.1)

where

�̂�𝑡+1 = 𝑥𝑡 + (1.5 ⋅ 𝑎𝑡 ,𝑥 − 0.5) + 𝑣𝑡 + 𝑏𝑡 ⋅ 𝜏𝑡,
̂𝑦𝑡+1 = 𝑦𝑡 + 𝑎𝑡 ,𝑦,

(5.2)

and 𝜏𝑡 ∼ 𝕌(−1, 1) is a uniform random variable that represents the turbulence. Figure 5.1
visualizes the core components of the transition function.

There is almost no turbulence at 𝑦 = 𝑤, but the velocity is too high to paddle back.
Similarly, the velocity is zero at 𝑦 = 0, but the canoeist can fall down the waterfall
unpredictably due to the high turbulence. A successful canoeist must find a balance
between handling the stochasticity and velocities within the capabilities of the canoeist
to get as close to the waterfall as possible. However, as the canoeist moves closer
to the waterfall, the distribution over the next states become increasingly more bi-
modal as the probability of falling increases. Together with the heteroscedasticity
introduced by the turbulence dependent on the current position, these properties make
the Wet-Chicken problem especially difficult for model-based reinforcement learning
problems.

5.2 Probabilistic Policy Search

We are interested in finding a policy specified by the parameters 𝜽𝜋 that maximizes
the discounted return 𝐽 𝜋(𝜽𝜋) = ∑𝑇

𝑡=0 𝛾 𝑡𝑟(𝐬𝑡) = ∑𝑇
𝑡=0 𝛾 𝑡𝑟𝑡 with a constant discount factor

𝛾 ∈ [0, 1]. Starting from an initial state 𝐬0 we generate a trajectory of states 𝐬0, … , 𝐬𝑇
obtained by applying the action 𝐚𝑡 = 𝜋(𝐬𝑡) at every time step 𝑡. The next state is
generated using the (latent) transition function 𝑓, yielding 𝐬𝑡+1 = 𝑓(𝐬𝑡, 𝐚𝑡).

Many environments have stochastic elements, such as the random drift in the Wet-
Chicken benchmark from Section 5.1. We take this stochasticity into account by
interpreting the problem from a Bayesian perspective where the discounted return
specifies a generative model whose graphical model is shown in Figure 5.2. Because

103

Chapter 5 Interpretable Reinforcement Learning

𝐬0 𝐬1 𝐬2 𝐬𝑇

𝐫0 𝐫1 𝐫2 𝐫𝑇

𝐚0 𝐚1 𝐚𝑇−1

𝜽𝜋

𝐉𝜋

𝐟

Figure 5.2: The generative process for the return 𝐽 𝜋. It shows how starting from 𝐬0, a trajectory
of length 𝑇 is generated with the policy parameterized by 𝜽𝜋. The return is generated by the
rewards which depend on their respective states only.

of the Markov property assumed in RL, conditional independence between the states
yields a recursive definition of the state probabilities given by

p(𝐬𝑡+1 | 𝑓 , 𝜽𝜋) = ∫ p(𝑓 (𝐬𝑡, 𝐚𝑡) | 𝐬𝑡, 𝐚𝑡) p(𝐚𝑡 | 𝐬𝑡, 𝜽𝜋) p(𝐬𝑡) d𝐚𝑡 d𝐬𝑡,

p(𝑟𝑡 | 𝜽𝜋) = ∫ p(𝑟(𝐬𝑡) | 𝐬𝑡) p(𝐬𝑡 | 𝜽𝜋) d𝐬𝑡.
(5.3)

With stochasticity or an uncertain transition model, the discounted return becomes
uncertain and the goal can be reformulated to optimize the expected return

𝔼[𝐽 𝜋(𝜽𝜋)] =
𝑇
∑
𝑡=0

𝛾 𝑡 𝔼p(𝐬𝑡|𝜽𝜋)[𝑟𝑡]. (5.4)

A model-based policy search method consists of two key parts [36]. First, a dynamics
model is learned from the state transition data. Second, this dynamics model is used to
learn the parameters 𝜽𝜋 of the policy 𝜋 which maximize the expected return 𝔼[𝐽 𝜋(𝜽𝜋)].
We discuss both steps in the following.

104

5.2 Probabilistic Policy Search

𝐾

𝐬𝑡 𝐚𝑡

𝐬𝑡+1

𝐟 (𝑘)𝑡 𝝈 (𝑘)
𝑡

𝐬(𝑘)𝑡+1

𝝀(𝑘)
𝑡

𝐥𝑡

Figure 5.3: The graphical model for the DAGP-based transition model. This model separates
the flow-behavior of the river 𝐟𝑡, the heteroscedastic noise process 𝝈𝑡 and the possibility of
falling down 𝝀𝑡. Latent variables 𝐥𝑡 represent the belief that the 𝑡 th data point is a drop event.

An Interpretable Transition Model

We formulate a probabilistic transition model based on high-level knowledge about
the Wet-Chicken benchmark. Importantly, we do not formulate a specific paramet-
ric dynamics model as would be required to derive a controller. Instead, we make
assumptions on a level typically available from domain experts.

We encode that given a pair of current state and action �̂�𝑡 = (𝐬𝑡, 𝐚𝑡), the next state 𝐬𝑡+1
is generated via the combination of three things: the deterministic flow-behavior of
the river 𝐟𝑡, some heteroscedastic noise process 𝝈𝑡 and the possibility of falling down 𝝀𝑡.
This prior imposes structure which allows us to explicitly state what we want to learn
from the data and where we do not assume prior knowledge: How does the river flow?
What kind of turbulence exists? When does the canoeist fall? How do the actions
influence the system?

Each question is explicitly answered by one of the model’s components. In Section 5.3,
we will visualize these components and discuss how they can be used by experts to gain
new insights about the system. Additionally, interpretable transition models help to
build trust in derived policies: Since experts can assess the plausibility of the transition
model, successful policies are unlikely to behave unexpectedly on the true system.

105

Chapter 5 Interpretable Reinforcement Learning

We formulate a graphical model in Figure 5.3 using the DAGP model from Chapter 3,
which allows us to handle the multi-modality introduced by falling down the waterfall
and extend it to handle the heteroscedastic properties of the problem. We specify this
separation via the marginal likelihood

p(𝐬𝑡+1 | �̂�𝑡) = ∫ p(𝐬𝑡+1 | 𝝈𝑡, 𝐟𝑡, 𝐥𝑡) p(𝐥𝑡 | �̂�𝑡) p(𝝈𝑡 | �̂�𝑡) p(𝐟𝑡 | �̂�𝑡) d𝝈𝑡 d𝐥𝑡 d𝐟𝑡, (5.5)

where 𝐟𝑡 = (𝐟 (1)𝑡 , … , 𝐟 (𝐾)𝑡). The marginal likelihood consists of the two GPs p(𝝈𝑡 | �̂�𝑡) and
p(𝐟𝑡 | �̂�𝑡) and the two likelihoods

p(𝐬𝑡+1 | 𝝈𝑡, 𝐟𝑡, 𝐥𝑡) =
𝐾
∏
𝑘=1

𝒩(𝐬𝑡+1 | 𝐟
(𝑘)
𝑡 , (𝝈 (𝑘)

𝑡)
2
)
𝕀(𝑙(𝑘)𝑡 =1)

,

p(𝐥𝑡 | �̂�𝑡) = ∫ℳ(𝐥𝑡 |softmax(𝝀𝑡)) p(𝝀𝑡 | �̂�𝑡) d𝝀𝑡

(5.6)

whereℳ denotes a multinomial distribution. These likelihoods describe the regression
and the classification tasks implied by the problem respectively: In our case, we use
𝐾 = 2 modes, one for staying in the river and one for falling down the waterfall.
For every data point we infer a posterior belief p(𝐥𝑡) about which mode the data
point belongs to, as we assume this separation can not be predetermined using expert
knowledge.

We place independent GP priors on the 𝐟 (𝑘), 𝝈 (𝑘) and 𝝀(𝑘). Given the data, a fixed set of
assignments 𝐋, our modeling assumptions imply independence between the 𝐾 modes.
However, this independence is lost if the assignments are unknown, and a discrete
optimization problem has to be solved for joint inference over the different modes
and the association problem. We approximate the exact posterior via a factorized
variational distribution

q(𝐟, 𝝀, 𝝈 , 𝐔) =
𝐾
∏
𝑘=1

𝑇
∏
𝑡=1

q(𝐟 (𝑘)𝑡 , 𝐮(𝑘)) q(𝝀(𝑘)
𝑡 , 𝐮𝜆)(𝑘) q(𝝈

(𝑘)
𝑡 , 𝐮𝜎)(𝑘) (5.7)

which introduces variational inducing inputs and outputs 𝐔 as described in Chapter 2.
These inducing inputs independently characterize the respective model parts and
enable us to do inference via stochastic optimization.

The variational parameters are optimized by minimizing a lower bound on the marginal
likelihood which can be efficiently computed via sampling and enables stochastic

106

5.2 Probabilistic Policy Search

optimization:

ℒDAGP = 𝔼q(𝐅,𝝀,𝝈,𝐔)[log
p(𝐒′, 𝐅, 𝝀, 𝝈 , 𝐔 | �̂�)

q(𝐅, 𝝀, 𝝈, 𝐔)
]

=
𝑇
∑
𝑡=1

𝔼q(𝐟𝑡)[log p(𝐬
′
𝑡 | 𝐟𝑡, 𝝀𝑡, 𝝈𝑡)] +

𝑇
∑
𝑡=1

𝔼q(𝝀𝑡)[log p(𝐥𝑡 |𝝀𝑡)]

−
𝐾
∑
𝑘=1

KL(q(𝐮(𝑘), 𝐮(𝑘)
𝜆 , 𝐮𝜎)

(𝑘)
‖ p(𝐮(𝑘), 𝐮(𝑘)

𝜆 , 𝐮𝜎)
(𝑘)
)

(5.8)

We obtain an explicit representation of the GP posteriors during variational inference,
which allows us to efficiently propagate samples through the model to simulate trajec-
tories used for policy search. Predictions for an unknown state �̂�∗ are mixtures of 𝐾
independent Gaussians given by,

q(𝐬′∗ | �̂�∗) = ∫
𝐾
∑
𝑘=1

q(𝑙 (𝑘)∗ | �̂�∗) q(𝐬
′(𝑘)
∗ | �̂�∗) d𝐥∗

= ∫
𝐾
∑
𝑘=1

q(𝑙 (𝑘)∗ | �̂�∗) q(𝐬
′(𝑘)
∗ | 𝐟 (𝑘)∗ 𝝈 (𝑘)

∗) q(𝐟 (𝑘)∗ , 𝝈 (𝑘)
∗ | �̂�∗) d𝐥∗ d𝐟∗ d𝝈∗

≈
𝐾
∑
𝑘=1

̃𝑙 (𝑘)∗ �̃�′(𝑘)∗ .

(5.9)

We sample from the assignment process 𝐥∗ and heteroscedastic noise process 𝝈∗. The 𝐾
predictive posteriors q(𝐬′(𝑘)∗ | 𝐟 (𝑘)∗ 𝝈 (𝑘)

∗) are then given by 𝐾 independent shallow GPs and
can be computed analytically.

Policy Learning

After training a transition model, we use the variational posterior q(𝐬𝑡+1 | �̂�𝑡) to train a
policy by sampling roll-outs and optimizing policy parameters via stochastic gradient
descent on the expected return 𝔼[𝐽 𝜋(𝜽𝜋)]. The expected return is approximated using

107

Chapter 5 Interpretable Reinforcement Learning

the variational posterior given by

𝔼[𝐽 𝜋(𝜽𝜋)] =
𝑇
∑
𝑡=0

𝛾 𝑡 𝔼p(𝐬𝑡|𝜽𝜋)[𝐫𝑡] ≈
𝑇
∑
𝑡=0

𝛾 𝑡 𝔼q(𝐬𝑡|𝜽𝜋)[𝐫𝑡] (5.10)

= ∫
𝑇
∑
𝑡=0

[𝛾 𝑡 𝔼q(𝐬𝑡|𝜽𝜋)[𝐫𝑡]] p(𝐬0)
𝑇−1
∏
𝑡=0

q(𝐬𝑡+1 | 𝐬𝑡, 𝜽𝜋) d𝐬0… d𝐬𝑇 (5.11)

≈ 1
𝑃

𝑃
∑
𝑝=1

𝑇
∑
𝑡=0

𝛾 𝑡𝑟𝑝𝑡 . (5.12)

We expand the expectation to explicitly show the marginalization of the states in the
trajectory. Due to the Markovian property of the transition dynamics, the integral
factorizes along 𝑡. The integral is approximated by averaging over 𝑃 samples propagated
through the model starting from a known distribution of initial states p(𝐬0). State
transitions can be efficiently sampled from the variational posterior of the dynamics
model by repeatedly taking independent samples of the different GPs.

The expected return in (5.10) can be optimized using stochastic gradient descent via
the gradients

∇𝜃𝜋𝐽
𝜋(𝜃𝜋) ≈

1
𝑃

𝑃
∑
𝑝=1

𝑇
∑
𝑡=0

𝛾 𝑡∇𝜃𝜋𝑟
𝑝
𝑡 (5.13)

of theMonte Carlo approximation as they are an unbiased estimator of the true gradient.
The gradients of the samples can be obtained using automatic differentiation tools
such as TensorFlow [1]. The 𝑃 roll-outs can be trivially parallelized. Importantly, we
only need a small number of Monte Carlo samples at every iteration, since we use the
gradients of the samples directly.

5.3 Experiments

To solve the Wet-Chicken problem, we first train the dynamics model on batch data
sampled from the true dynamics and then optimize neural policies with respect to this
dynamics model. As the DAGP-based dynamics model is designed to be interpretable,
we first discuss how, additionally to a joint posterior, the independent posteriors of its
components yield insights about theWet-Chicken problem. We then show how success-
ful policies can be found with fewer observations compared to the model-free NFQ [89]
and model-based Bayesian Neural Networks with latent variables (BNN+LV) [41], two

108

5.3 Experiments

0 2.5 5

0

2.5

5
waterfall

𝐲

𝐱

−2

0

2

(a) Flow Δ𝐱(1)

0 2.5 5

waterfall

𝐲

0

0.5

1

1.5

(b) Heteroscedastic turbulence 𝝈𝑥

0 2.5 5

0

2.5

5
waterfall

𝐲

𝐱

−2

0

2

(c) Drop 𝐱′(2)

0 2.5 5

waterfall

𝐲

0

0.2

0.4

0.6

0.8

1

(d) Drop probability 𝝀(2)

Figure 5.4: The separation of different aspects of the Wet-Chicken in DAGP-based transition
models benchmark yields new and interpretable information about the underlying dynamics.
The different parts of the model explicitly show flow speeds (Figure 5.4a), turbulence (Fig-
ure 5.4b), drop behavior (Figure 5.4c) and drop probabilities (Figure 5.4d) with respect to the
current position in the river and action 𝑎 = 0. The model has learned that the river is turbu-
lent on the left and fast on the right, leading to consistent medium drop probabilities on the
left due to stochasticity and a sharp boundary on the right, where the flow speed dominates.
Note that a drop resets the position to the initial state irrespective of the current state. It is
therefore correctly learned to be represented by the constant zero function (Figure 5.4c).

109

Chapter 5 Interpretable Reinforcement Learning

0

0.5

1

p(
dr
op

)

0

2.5

5
𝐱 𝑡
+
1

0

0.5

1

p(
dr
op

)

0

2.5

5

𝐱 𝑡
+
1

0

0.5

1

p(
dr
op

)

0

2.5

5

𝐱 𝑡
+
1

0

0.5

1

p(
dr
op

)

0

2.5

5

𝐱 𝑡
+
1

0

0.5

1

p(
dr
op

)

0 2.5 5

0

2.5

5

𝐱𝑡

𝐱 𝑡
+
1

Figure 5.5: Linear cuts through the DAGP-based transition model with the waterfall on
the right at 𝑥𝑡 = 5. The plots show the dependency between 𝑥𝑡 and 𝑥𝑡+1 with respect to
the action 𝑎𝑡 = 0 and, from top to bottom, 𝑦𝑡 ∈ {0, 1, 2.5, 4, 5}. The DAGP-based transition
model successfully separates the two modes introduced through flow (blue) and drop (green)
behaviors and predicts the probability of being assigned to the drop mode (violet). While
drops can be modeled using a constant noiseless function, the flow speed (gradient and bias)
and heteroscedastic noise (variance) varies in the different cuts. For low 𝑦𝑡, the river flows
slowly but is very turbulent, while for high 𝑦𝑡, the river flows fast but deterministically.

110

5.3 Experiments

approaches which do not make use of high-level expert knowledge. Thirdly, we show
how the human-interpretable components of the dynamics models can be used for
reward shaping, allowing us to formulate a requirement for conservative policies.

Dynamics Model

The benchmark has two-dimensional state and action spaces from which we sample
uniform random transitions with varying 𝑁 in the range 100 to 5000. For 𝑁 ≥ 250,
our model can identify the underlying dynamics. In Figure 5.5 we show the joint
predictive posterior of a DAGP-based transition model. The different plots show
linear cuts through the Wet-Chicken system with respect to the action 𝑎𝑡 = 0 and
𝑦𝑡 ∈ {0, 1, 2.5, 4, 5}. The transition model has successfully identified the two modes
introduced through flow and drop behaviors and their relative importance. These
cuts require an additional examination to recover new knowledge about the system’s
behavior. In contrast, the separation of the learning problem in the DAGP-based
dynamics model gives us explicit and separate posteriors about the different system
components via the independent GP posteriors shown in Figure 5.4. This belief can
directly be reasoned about with experts to evaluate the environment in which policies
will be trained, raising confidence in their correctness.

While drops can be modeled using a constant noiseless function, the flow speed and
heteroscedastic turbulence vary throughout the system. For low 𝑦, the river flows
slowly but is very turbulent, while for high 𝑦, the river flows fast but deterministically.
In the turbulent regime, falling down is possible but not certain for most 𝑥, while in
the flow dominated regime, a drop becomes highly probable under a certain distance
from the waterfall. Note that even though the turbulence as defined in Section 5.1
is independent of 𝑥, the heteroscedastic noise process has uncovered the implicit
dependency for high 𝑥 as most possible turbulence values lead to falling down and
thus assignment to the other mode. Similarly, the flow speed shown in Figure 5.4a
is negative in the top left corner, since the flow mode models the position after one
step under the condition of not falling. As most turbulence into the direction of the
waterfall leads to a drop, the posterior mean is further away from the waterfall as the
turbulence dominates the low flow speed on the left side of the river.

Policy Learning

Given a posterior for the dynamics model, we now train a neural policy using proba-
bilistic model rollouts. We sample initial states from the training data, use a horizon of

111

Chapter 5 Interpretable Reinforcement Learning

Table 5.1: Comparison of expected returns Using interpretable DAGP-based transition models
with structurally informative priors, successful policies can be learned based on 250 observa-
tions. In contrast, about 2500 observations are needed to find a policy using the model-free
NFQ. As GP based transition models are not capable of representing bimodal dynamics,
training does not yield successful policies.

N NFQ BNN+LV GP DAGP

100 0.66 ± 0.16 — 1.41 ± 0.01 1.18 ± 0.09
250 1.71 ± 0.07 1.62 ± 0.20 1.54 ± 0.01 2.33 ± 0.01
500 1.60 ± 0.10 2.18 ± 0.07 1.56 ± 0.01 2.25 ± 0.01
1000 1.99 ± 0.06 2.27 ± 0.01 2.13 ± 0.01 2.32 ± 0.01
2500 2.26 ± 0.02 2.30 ± 0.01 1.91 ± 0.01 2.28 ± 0.01
5000 2.33 ± 0.01 2.30 ± 0.01 1.91 ± 0.01 2.28 ± 0.01

0 2.5 5

0

2.5

5
waterfall

𝐲

𝐱

Figure 5.6: A successful Wet-chicken policy. It has found a trade-off between the unpre-
dictability on the left and the uncontrollable speed on the right. The policy approaches a
sweet-spot on the right side and tries to stay in place.

112

5.3 Experiments

Table 5.2: As the different components of a DAGP-based transition model are easily inter-
pretable, they can be used for reward shaping. We formulate a conservative reward function
𝑟cons which penalizes drops and can easily be evaluated in the transition model. A conserva-
tive policy has a lower return but avoids the waterfall more often.

Training Original Conservative Drop
Reward Return Return %

𝑟orig 2.32 ± 0.01 −1.22 ± 0.02 21.8 ± 0.2
𝑟cons 2.17 ± 0.01 −1.00 ± 0.01 18.9 ± 0.1

0 2.5 5

0

2.5

5
waterfall

𝐲

𝐱

Figure 5.7: A conservative Wet-Chicken policy. By cautiously approaching a sweet-spot
further away from the waterfall, it avoids the waterfall more often than a standard policy.

113

Chapter 5 Interpretable Reinforcement Learning

𝑇 = 5 steps and average over 𝑃 = 20 samples with 𝛾 = 0.9. We use a two-layer neural
network, with 20 ReLU-activated units each, as our policy parametrization. For every
state transition, we sample independently from the different model components to
generate a sample for the next state using (5.9). This incorporates both the stochasticity
in the system introduced via heteroscedastic noise and the Bayesian uncertainty about
the correct model in the policy search. During training, the policy thus implicitly
learns to consider the stochasticity of the Wet-Chicken benchmark as different sample-
trajectories generate gradients with respect to different realizations of the stochasticity
of the Wet-Chicken benchmark. Figure 5.6 shows how a successful policy has found a
trade-off between the unpredictability on the left and the uncontrollable speed on the
right.

In Table 5.1, we compare policy search based on the DAGP-based dynamics model with
a standard GP dynamics model and NFQ. We present expected returns for training runs
with different amounts of data averaged over ten experiments together with standard
errors. A policy applying uniformly random actions yields a return of about 1.5, and a
return above 2.2 indicates that a successful policy has been found. We ran NFQ for 20
full model learning and sampling iterations using a neural network with one 10-unit
hidden layer with sigmoid activations.

A standard GP cannot model heteroscedastic noise or multi-modality. For any point
in the input space, the GP can, therefore, only predict that the agent will always fall
down, never fall down, or, via very high uncertainties, that any state in the system is
possible. None of these possibilities represent the dynamics well enough to allow the
policy search to derive a policy, illustrating our need for a more structured model. For
𝑁 ≥ 250, the DAGP-based dynamics model identifies the underlying dynamics well,
and policies can be found reliably.

BNN+LV is a more expressive model that can represent both heteroscedasticity and
multi-modality. Due to the model’s structure, however, it is hard to incorporate high-
level expert knowledge, and therefore, more structure has to be learned from the
data. BNN+LV reliably finds good policies for 𝑁 ≥ 1000 and sometimes finds good
policies for 𝑁 = 500. As this approach is model-based and formulates a reasonable
general-purpose prior on the dynamics, the results fall between the more informed
DAGP, which is successful with less data, and NFQ, which is more uninformed.

NFQ is a model-free approach. Instead of learning a dynamics model and using rollouts
in that model to find a good policy, NFQ directly models the optimal Q-function and
thus the optimal policy. A Q-function represents the expected return after taking a
specified action in a specified state. Since the expected return already takes into account
both the heteroscedasticity and multi-modality of the system, the Q-function itself can

114

5.3 Experiments

be modeled with a standard function approximator, such as a neural network. Thus, no
special modeling is needed when applying NFQ to the Wet-Chicken benchmark and,
given enough data, NFQ can find successful policies. However, at the same time, not
modeling the dynamics explicitly also prevents us from utilizing the high-level expert
knowledge we have about the system, thus increasing the required amount of data:
Using DAGP-based dynamics models, a successful policy can be found with about an
order of magnitude fewer observations.

Reward Shaping

We have shown how a dynamics model informed by high-level expert knowledge
increases data efficiency. A further advantage of the decomposition of the dynamics
model in interpretable components is that the predictions of these components can be
used to influence the policy search. In this example, wewant to find amore conservative
policy which, when compared to Figure 5.6, sacrifices some return in order to avoid
falling down the waterfall.

Any successful agent has the implicit incentive to avoid drops as they move the canoeist
away from the waterfall. However, a successful policy still accepts that it will fall
sometimes due to turbulence. To encourage more conservative behavior, we use a
conservative reward

𝑟cons(𝐬) = 𝑟orig(𝐬) ⋅ (1 − p(drop | 𝐬)) − 5 ⋅ p(drop | 𝐬) (5.14)

which includes the original Wet-Chicken reward function 𝑟orig((𝑥, 𝑦)) = 𝑥. For every
state, the DAGP-based dynamics model yields an explicit drop-probability which
can easily be evaluated. The conservative reward punishes a high drop probability
reweighed with the maximum original reward max𝐬 𝑟orig(𝐬) = 5.

Figure 5.7 shows a resulting conservative policy. Such a policy avoids both the turbulent
states on the left and the fast-flowing states on the right. It tries to reach a sweet spot,
which, compared to Figure 5.6, is further away from the waterfall and therefore safer.
We compare 10 runs with 𝑁 = 1000 observations using the original reward and the
conservative reward in Table 5.2. The resulting conservative policies yield a lower
return than the more aggressive default policies but reliably reduce drop probabilities
as well. The interpretable nature of the dynamics models has allowed us to influence
policy behaviors.

115

Chapter 5 Interpretable Reinforcement Learning

0 2.5

0

2.5

5

𝐱 𝑡
+
1

0 2.5

0.1

0.5

1

𝐱𝑡

p(
𝐥)

(a) Transition model with 𝐾 = 4 and successful policy training

0 2.5

0

2.5

5

𝐱 𝑡
+
1

0 2.5

0
0.2
0.5

1

𝐱𝑡

p(
𝐥)

(b) Transition model with 𝐾 = 4 and failed policy training

Figure 5.8: Comparison of linear cuts through two DAGP-based transition models with 𝐾 = 4
at 𝑦𝑡 = 5 and 𝑎𝑡 = 0. The respective upper plots show the predictive posterior of the different
modes while the lower plots show assignment probabilities to the different modes. For both
models, one mode (green, dotted) model drops and two modes (blue and yellow, dashed)
represent flow behavior. A third more uninformed mode (violet) is almost irrelevant in the
first model but explains some data through a high noise variance in the second model. A
significant amount of predictions from the second model are uninformed, leading to the
failure of the policy search.

116

5.3 Experiments

Table 5.3: Comparison of expected returns for different settings of 𝐾. Well-specified models
with 𝐾 = 2 reliably solve the benchmark problem with low amounts of data. Mis-specified
models show higher variance in their results and do not reliably solve the benchmark.

DAGP

N 𝐾 = 1 𝐊 = 𝟐 𝐾 = 3 𝐾 = 4 𝐾 = 5

250 1.41 ± 0.01 2.33 ± 0.01 1.64 ± 0.38 1.31 ± 0.25 1.65 ± 0.08
500 1.54 ± 0.01 2.25 ± 0.01 1.97 ± 0.23 1.48 ± 0.21 2.14 ± 0.10
1000 2.13 ± 0.01 2.32 ± 0.01 1.99 ± 0.17 2.09 ± 0.12 2.16 ± 0.09
2500 1.91 ± 0.01 2.28 ± 0.01 2.15 ± 0.03 2.06 ± 0.12 2.17 ± 0.03
5000 1.91 ± 0.01 2.28 ± 0.01 2.19 ± 0.06 1.95 ± 0.16 2.08 ± 0.13

Effects of Model Misspecification

In Section 5.2 we have formulated a dynamics model informed by high-level expert
knowledge. One important insight we assumed is the bimodal nature of the Wet-
Chicken problem introduced by the waterfall. In Section 5.3, we compared our model
to standard GPs and showed that modeling multi-modality is critical to solving Wet-
Chicken. We extend this comparison in this experiment and discuss the effects of model
misspecification on our model’s performance. Specifically, we investigate the case
where additional modes are available to the dynamics model to solve the underlying
data association problem.

Table 5.3 shows results for 𝐾 ∈ {1, … , 5}, where 𝐾 = 1 is equivalent to standard GPs.
All models have been trained for the same number of iterations, and, for 𝐾 > 1, all
models have comparable marginal likelihoods. While 250 data points are enough with
𝐾 = 2 to reliably solve the Wet-Chicken problem, more data is needed until working
policies can be found with 𝐾 > 2 (for example for 𝐾 = 5, double the data was required
for one of the runs to find a working policy). Most notably, performance fluctuates
significantly with misspecified models for different repetitions of the same experiment,
and good policies can not be found reliably.

Using the additional modes available, the model can now find representations of the
systems where multiple modes jointly represent the river’s flow. This showcases how
data association problems are inherently ill-posed in general [8, 30]. The additional
representative power for 𝐾 > 2 introduces symmetries in the optimization landscape
that both complicate training [75, 78], and lead to undesired generalization behavior
which is not driven by knowledge about the underlying system.

117

Chapter 5 Interpretable Reinforcement Learning

An example for undesired generalization is shown in Figure 5.8 which compares two
models trained with 𝐾 = 4 and 𝑁 = 2500. While both models explain the overall
training data well, the cuts through the system at 𝑦𝑡 = 5 give an intuition why the
first model leads to a successful policy, while the second model does not. Both models
represent drops via one of the modes and share the remaining three modes to jointly
explain the flow behavior. In the first model, two alternating modes have learned
essentially equivalent models, and a third more uninformed mode is almost irrelevant.
The second model is similar, but the uninformed mode’s model is closer to the RBF
prior and more relevant. Note that due to the high noise variance, this choice of the
model still explains the data only slightly worse. Still, the second model does not
generalize according to the underlying system. A significant amount of predictions
from the second model are uninformed, leading to the failure of the policy search.

Significantly longer training or specialized optimization schemes may lead to robust
inference for 𝐾 > 2. However, this experiment shows the significance of encoding
available abstract prior knowledge to avoid pathologic model behaviors. Models for
𝐾 = 2 both reliably identify the system using standard optimization methods and yield
immediately interpretable results.

5.4 Discussion

We have presented a Bayesian reinforcement learning model-based on non-parametric
Gaussian process priors. The model is motivated by the observation that in real-
world scenarios, high-level prior knowledge of the system dynamics is often available.
We believe that many tasks are characterized by dynamics that can be decomposed
into several attributes. For example, when a physical structure is excited by a force
oscillating at its natural frequency, its response will change drastically. The approach
we have presented is based on learning a modular dynamic model that decomposes
this type of transitional behavior into separate components. The model learns both the
individual components and the underlying structure of how the components interact
within the system. The use of Gaussian process priors to quantify the uncertainty
within components allows us to perform probabilistic policy search.

The interpretable structure of our model facilitates data-efficient learning by incorpo-
rating prior knowledge. We showed experimentally how an informed dynamics model
reduces the data requirements compared to a model-free approach. Furthermore, the
same knowledge can be used as a means for directing the policy search by discouraging

118

5.4 Discussion

solutions which exhibit a specific dynamic, such as avoiding falling down the waterfall
in the Wet-Chicken benchmark.

The model presented in this chapter is derived from the DAGP model in Chapter 3 and
therefore shares its limitations. Most importantly, the variational approximation which
factorizes between layers cannot capture the full Bayesian posterior for ambiguities in
the association problem. In Chapters 3 and 4, we showed that it is hard to distinguish
qualitatively different solutions automatically. This difficulty is a consequence of
the difficulty to formally describe desirable model behavior besides high marginal
likelihoods on training or test data. In this chapter, we presented an approach to
achieve this formal description by evaluating models on a reinforcement learning task
they are designed to solve. A successful model both shows an expert-interpretable
internal structure and good performance on downstream tasks that depend on a correct
representation of the dynamical system.

119

Chapter 6

Discussion and Future Work

This thesis explored how to formulate Bayesian structured models with Gaussian pro-
cess models. In Chapter 2, we gave an introduction to Bayesian machine learning based
on statistical learning theory. A machine learning problem was characterized as an
under-specified computational problem that requires additional subjective assumptions
to solve. In a regression problem, finitely many observations are used to select an
infinite-dimensional object, a function that explains them well. Bayesian structured
models enabled us to formalize abstract assumptions about these functions while also
allowing us to gain new insights from data. We have shown that due to their rich
internal structure, judging the performance of structured models through the risk
minimization algorithm may not be sufficient to identify the desirable models.

Chapter 3 discussed how Bayesian white-box models can be relaxed with Gaussian
processes to allow data-driven insights and strong scalability. We introduced a Bayesian
approach to the data association problem, where we consider a data set that has been
generated by a mixture of processes, and where we are interested in factorizing the data
into these components. A fully Bayesian model can produce such a factorization and
yieldmodels that explain observations well. However, since empirical riskminimization
only evaluates the predictive distribution of a model and does not consider its internal
structure, hierarchical models can introduce qualitative ambiguities: As long as they
result in the same predictive distribution and are equally plausible under a structural
prior, Bayesian model selection cannot distinguish between more and less interpretable
or desirable solutions. In the general data association problem, formalizing the desirable
solutions via some specific dependency structures is a hard problem from both the
modeling and the inference points of view.

Chapter 4 considered how to achieve such a formalization in the more specific problem
domain of time-series alignment. We started with a black-box deep Gaussian process
model and added structure to constrain the model to yield interpretable results and

121

Chapter 6 Discussion and Future Work

trustworthy predictions. We viewed the power production of different wind-turbines
in a wind-farm as a multi-modal time-series with shared latent information, the wind
fronts interacting with the turbines. A hierarchical structure is introduced by the
alignment problem of how wind fronts move through the system. By formulating
a strong prior on the dependence between modes through a multi-output GP and
encoding knowledge about the underlying physical system, ambiguities can be avoided,
and rich structure can be learned. A strong prior simplifies inference but also limits
what can be learned from data based on subjective notions of what makes a model
correct.

Chapter 5 explored how this subjectiveness can be incorporated into the model itself
to allow semantic model-selection. Taking the wet-chicken reinforcement learning
problem as an example, a model is formulated based on high-level prior knowledge
about the system dynamics decomposing the inference task into interpretable com-
ponents. The correctness of the model can be evaluated through experts inspecting
the interpretable components and the downstream performance in the reinforcement
learning task. We showed that while misspecified models yielded similar predictive
distributions to semantically correct models, a well-specified model can solve the posed
task significantly better.

In this chapter, we explore further how taking downstream tasks into account can affect
modeling decisions and discuss challenges during inference. A Bayesian posterior of
a hierarchical generative process with general function approximators can be very
complex, and the fewer constraints are put on it, the more heterogeneous it can
be. The inference schemes for hierarchical Gaussian process models introduced in
Section 2.7 rely on variational independence assumptions between components to
achieve computational tractability. In Chapter 4, we saw that these inference schemes
can struggle when posteriors become complex. In Section 6.1, we present an intuitive
argument for why inference schemes based on factorizations between layers cannot
represent heterogeneous posteriors. Empirical riskminimization through highmarginal
likelihoods in Bayesian model selection is not always enough to identify semantically
correct hierarchical models as it does not consider internal structure. Undesired
explanations of the data can be removed from the posterior by formulating priors with
strong constraints, such as in Chapter 4. However, this approach requires extensive
prior knowledge and limits what can be learned from data. In Section 6.2, we argue
from a more general point of view and explore if it is always desirable for components
of a structured model to explain the data. We show that models with suboptimal
marginal likelihoods can perform well in hierarchical systems. Following the reasoning
of including tasks in structured models further, we explore how tasks can be included

122

6.1 Inference in Hierarchical Models

0 2 4 6

−2

0

2

4
Inputs

0 2 4 6

Rotation 1

0 2 4 6

Translation 1

0 2 4 6

Rotation 2

0 2 4 6

Translation 2

Figure 6.1: The rotated squares example. An overparameterized composite model should map
the solid rectangle onto the dashed one. The required affine transformation is parameterized
as 𝑇2 ∘ 𝑅2 ∘ 𝑇1 ∘ 𝑅1, where 𝑅𝑖 and 𝑇𝑖 are rotations and translations. Different possible solutions
show the complexity of the solution space. Approximating 𝑅𝑖 and 𝑇𝑖 as independent trans-
formations does not allow us to capture a full posterior but collapses to a single solution.

−1 −0.5 0 0.5 1

−1

0

1

x

f1(x)

−1 0 1

−2

−1

0

1

2

x

f2(x)

−2 −1 0 1 2

−1

0

1

x

f3(x)

−1 −0.5 0 0.5 1

−2

−1

0

1

2

x

f2 ◦ f1(x)

−1 −0.5 0 0.5 1

−1

0

1

x

f3 ◦ f2 ◦ f1(x)

Figure 6.2: The identity function example. An identity function is parameterized as a com-
position of three linear functions with positive or negative slope. Different colors show
three deep GP posteriors. Since the correct choice of the third layer depends on the first two
layers, and independent approximation collapses to a single solution.

in a Bayesian inference problem directly in Section 6.3. In Section 6.4, we discuss
possible further directions of research.

6.1 Inference in Hierarchical Models

The experiments in Chapter 3 showed that the data association problem generally does
not have a unique solution. Besides exchanging modes entirely, the spatial priors in the
Bayesian association model allow for qualitatively different explanations of the data, all
of which conform similarly well to the prior and result in similar marginal likelihoods.
Since all explanations are plausible, a full Bayesian posterior should contain all possible
associations and generating processes. Marginalizing all plausible model realizations
would take all possible solutions of the assignment problem into account. This full
posterior is highly complex, however, and contains strong dependencies between the

123

Chapter 6 Discussion and Future Work

different components of the hierarchical model. In this section, we describe why
the variational inference schemes from Section 2.7 based on strong independence
assumptions can only represent posteriors of limited complexity. For additional details
and detailed experiments, we refer to the associated publication [118].

Figure 6.1 illustrates this complexity on a toy example of mapping a square to another
square in the two-dimensional euclidean plane. We formulate an overparameterized
hierarchical model by representing the required affine transformation as the chain
𝑇2∘𝑅2∘𝑇1∘𝑅1, with the 𝑇𝑖 representing translations and the𝑅𝑖 representing rotations. The
task can be solved by an arbitrary choice of 𝑇1 and 𝑅1 and corresponding choices 𝑇2 =
𝑇∗∘𝑇

−1
1 and𝑅2 = 𝑅∗∘𝑅

−1
1 with 𝑇∗∘𝑅∗ representing the unique correct transformation from

one square to the other. This example illustrates that the notion of a correct hierarchical
posterior is problematic: A posterior model might assign a non-zero probability to all
possible choices of the first rotation and transformation and a delta-distribution for the
correct corresponding choice of the second rotation and transformation. Alternatively,
a posterior might choose 𝑇1 and 𝑅1 to be identity mappings and 𝑇2 = 𝑇∗ and 𝑅2 = 𝑅∗.
While the first posteriormight be considered amore correct Bayesian posterior correctly
representing unidentifiable parts of the learning problem, the second posterior is
arguably simpler and represents the uniqueness of the correct solution better. Since
both solutions explain the data equally well, this question might not be a problem in
practice if the goal is to design a model that provides a high marginal likelihood of the
data. In situations where reasoning about the internal structure of a hierarchical model
such as in Chapter 4 or generalization behavior such as in Chapter 5 come into focus,
informative posterior distributions over hierarchical generative processes can allow
us to build more interpretable models and represent multiple qualitatively different
solutions.

The original variational inference scheme for deep GP models by Damianou et al. [32]
is prohibitively expensive for large data sets. To overcome this limitation, the inference
schemes presented in Section 2.7 make strong independence assumptions between
different components in a deep GP. While these assumptions allow training deep
GPs with large amounts of data, assuming independence between the different 𝑓𝑖 in a
compositional prior 𝑓𝐿 ∘…∘𝑓1 significantly limits the expressiveness of model posteriors,
since every realization of the composition must map the same input to the same output.
Figure 6.2 shows a composition of three linear functions, each of which has either a
positive or a negative slope. Together, they need to represent the identity function.
The choice of slope for 𝑓3 depends on the choice of 𝑓1 and 𝑓2. The colors represent
different results of training. Since the 𝑓𝑖 are assumed to be independent, the only way to
ensure that every realization of the posterior fits the data is to collapse to deterministic
functions. This intuition also holds for general deep GPs, where qualitatively different

124

6.2 Surrogate Models For Bayesian Optimization

choices in mappings closer to the input cannot lead to corresponding choices closer to
the output.

The model discussed in Chapter 4 yields expressive and interpretable uncertainties by
formulating a detailed and informed prior paired with a learning problem with inher-
ently high uncertainties due to noise. Relaxing these requirements to less constrained
models requires advances in inference schemes that can represent more expressive
posteriors. Recent work extends the variational approximations with dependencies be-
tween layers [118] or proposes inference based on stochastic gradient Hamilton Monte
Carlo [42, 53]. While in their current state, such inference schemes are computationally
expensive, they present promising directions of research.

6.2 Surrogate Models For Bayesian Optimization

Above, we have argued that, in hierarchical models, a high marginal likelihood may
not be sufficient to identify a desirable solution because the marginal likelihood does
not take internal structure into account. In this section, we consider a complementary
situation, where amodel is embedded in a hierarchy. We consider Bayesian optimization
(BO) [104], where an (often non-hierarchical) regression model is used to solve an
optimization problem based on limited observations of the objective function. We
make an argument why surrogate models with suboptimal marginal likelihood can be
the model of choice for solving the downstream task. For additional details about the
model and detailed experiments, we refer to the associated publication [16].

BO is a method for finding the optimum of functions that are unknown and expensive
to evaluate. Let 𝑓 ∶ 𝒳 → ℝ be an unknown, noise-free objective function defined
on a bounded subset 𝒳 ⊂ ℝ𝑘 for some 𝑘 ∈ ℕ. The goal of BO is to solve the global
optimization problem of finding

𝐱∗ ∈ argmin
𝐱∈𝒳

𝑓 (𝐱). (6.1)

By fitting a surrogate model to samples of an unknown objective, the BO procedure
iteratively picks new samples for evaluation that are believed to be the most informative
about where the optimum is located. In real-world problems, the objective function
is often not a well-behaved function, and a suitable model is difficult to specify. A
misspecified model can be especially problematic in sequential decision making tasks
such as BO, where the model is not only used to locate the optimum based on the
collected data but also to decide where to collect data for future decisions.

125

Chapter 6 Discussion and Future Work

Input

O
b
je
ct
iv
e

Input

O
b
je
ct
iv
e

Input

O
b
je
ct
iv
e

Figure 6.3: A comparison of Gaussian process posteriors for a noise-free GP (left), a ho-
moscedastic GP with Gaussian noise (center) and a LGP (right). A noise-free GP learns a low
lengthscale to explain the rapid oscillations in the data, while a homoscedastic GP explains
them with a high noise level. Both surrogates lead to poorly informed decisions for the next
BO query via the EI-acquisition. The LGP-surrogate sacrifices local exactness to recover
global trends and yields an informed posterior.

There are many approaches to avoiding model misspecification in surrogate mod-
els for BO based on additional structure. For example, GP surrogates can be aug-
mented with warpings to model non-stationarity [105], separate the input space via
tree-structures [62] or optima can be searched via pairwise comparison [51]. While
carefully chosen extensions can avoid misspecification, inference over more sophisti-
cated surrogates often requires more observations, which is not desirable in the BO
setting. Importantly, the ultimate goal of BO is to locate the optimum, not to model the
objective as precisely as possible. In practice, surrogates with high complexity often
perform worse compared to simpler ones even if the former contains the true objective
function while the latter does not.

To formalize this observation, we consider the family of objective functions 𝑓 that can
be represented as a composition

𝑓 (𝐱) = 𝑔(𝐱, 𝐡), 𝐡 = ℎ(𝐱), (6.2)

where 𝑔 is a well-behaved function that can be nicely modeled by a BO surrogate and the
nuisance function ℎ(𝐱) encodes the structures the surrogate model struggles to capture.
Instead of building a complex surrogate model with minimal model misspecification,
we propose to explicitly trade-off accuracy in modeling the objective with the efficiency
of capturing informative structures from small amounts of data. For example, local
oscillations and discontinuities are less important to capture in a BO setting than
describing global trends.

Assuming additive structure 𝑓 (𝐱) = 𝑔(𝐱) + ℎ(𝐱) and choosing the nuisance function to
be input-independent noise ℎ(𝐱) ∼ 𝒩 (𝟎, 𝜎2I) recovers GP regression with a Gaussian
likelihood. For richer structure, we place a GP prior on 𝑔(𝐱, 𝐡) and infer independent

126

6.3 Bayesian Reinforcement Learning

latent variables 𝐡 ∼ 𝒩 (𝟎, 𝜎2I) for all observations 𝐱, giving rise to a Latent Gaussian
process (LGP) [15, 85, 120, 124]. Intuitively, increasing the absolute value of 𝐡 is
penalized by the prior but allows the surrogate to not interpolate an observation exactly
and to ignore local structure. Similar to using noiseless predictions with Gaussian
likelihoods, we ignore the nuisance parameters 𝐡 in the search for the optimum and
focus on the global trends captured by 𝑔(𝐱, 𝟎).

Figure 6.3 compares three surrogates on a function with challenging local structure. A
standard noiseless GP interpolates all observations exactly and must capture all local
variations. Since this surrogate quickly reverts to the prior between observations, it
cannot capture global trends and therefore is not very helpful in solving the global
optimization problem. The LGP-based surrogate ignore local structure and does not in-
terpolate observations exactly, which leads to a reduced marginal likelihood. However,
the model uncovers a global trend, which allows the BO-scheme to identify the correct
area of interest.

The experiments in [16] give empirical evidence that this intuition holds for many BO
tasks. The approach performs well in high-dimensional problems, where global trends
tend to matter more in low-data regimes due to the curse of dimensionality. The idea
that a surrogate in BO need not model the objective perfectly but yield informative
insights for the optimization task was not formally included in the model formulation
in this section. Instead, we considered a class of surrogates that implicitly have this
property. In the next section, we go one step further and include the task of policy
search in the inference problem of reinforcement learning explicitly.

6.3 Bayesian Reinforcement Learning

In statistical learning, the goal is to learn about an unknown latent probability distri-
bution via a limited number of observations. The goal of learning is to recover some
projection or functional of interest of the latent distribution. In this thesis, we have
mostly focused on the regression setting, where the goal is to learn the marginal p(𝐲 |𝐱)
of a data distribution p(𝐱, 𝐲). We have formulated hierarchical models to incorporate
prior knowledge about the generative process that informs the data distribution. We
have argued that a high marginal likelihood may not be enough to identify a desirable
hierarchical model that, besides reproducing data, also captures the true generative
process well.

In Chapter 5, we saw that well-specified models solve decision problems in reinforce-
ment learning significantly better than misspecified problems, even if they represent

127

Chapter 6 Discussion and Future Work

Table 6.1: Mapping of the statistical learning methodology to the reinforcement learning
problem. An optimal policy is characterized by the Bellman principle. An RL algorithm
must find a policy based on a limited amount of interaction with the system.

p(𝐳) 𝒮

ℱ

S

F
A

Statistical learning Reinforcement learning

p(𝐳) Latent distribution True system-dynamics
𝒮 Observations Batch or online data
ℱ Functional of interest Optimal value

𝐹 ∶ 𝒫𝒵 → ℱ Functional operator Bellman principle
𝑆 ∶ 𝒫𝒵 → 𝒮 Sampling operator Exploration
𝐴 ∶ 𝒮 → ℱ Learning algorithm Policy search

training data equally well. In this section, we formalize this insight and formulate the
policy search problem in reinforcement learning via a generative process. This repre-
sentation allows us to include the requirement for a good performance in the inference
problem and reason about it in a Bayesian manner. In Table 6.1, we show how policy
search in reinforcement learning problem can be formulated as a statistical learning
problem. Based on latent true system dynamics, our goal is to identify the optimal
value function and thus an optimal policy based on a limited number of interactions
with the system. The optimal value is defined via the Bellman principle [111], which is
hard to apply directly in general. Instead, we observe batch or online data and apply
an algorithm for policy search.

Our goal is to formulate the policy search in reinforcement learning as an inference
problem in a hierarchical model. We start by interpreting the definition of the 𝑇-step
value function

𝐽 𝜋(𝐬0) = 𝔼[
𝑇
∑
𝑡=1

𝛾 𝑡𝑟(𝐬𝑡) | 𝑓 , 𝜋] (6.3)

128

6.3 Bayesian Reinforcement Learning

Deep GP

Likelihood

𝐬0 𝐬1 𝐬2 𝐬𝑇

𝐫0 𝐫1 𝐫2 𝐫𝑇

𝐚0 𝐚1 𝐚𝑇−1

𝐉∗

𝐟

𝜋

Figure 6.4: An interpration of the generative process of the optimal value as a hierarchical GP
model. A transition model 𝐟 and policy 𝝅 parameterize the value through a deep GP and a
special likelihood function.

as a generative process with the associated graphical model in Figure 6.4. Starting
with the initial state 𝐬0, the trajectories are generated using the transition dynamics
𝑓 and the policy 𝜋. If both the transition dynamics and the policy are represented as
GPs, the graphical model of a trajectory is a recurrent deep Gaussian process. The
states are mapped to rewards using the known reward function 𝑟 and added to produce
the value 𝐽 𝜋, thereby defining a likelihood function. Instead of considering the value
of any arbitrary policy 𝜋, we now reason about the uniquely defined optimal value
𝐽∗. Since the optimal value can be parameterized by an optimal policy 𝜋∗, it can be
represented in our hierarchical model. Our goal is to formulate an equivalent to the
marginal likelihood of the optimal value function and derive an inference scheme.

There are two distinct sources of uncertainty in this model. First, the knowledge of
the dynamical system can be imperfect, or the system can be stochastic. Both effects
make trajectories non-deterministic, even if the initial state and policy are fixed. This
kind of uncertainty is reflected in the expected value of the original value definition,
and we retain these uncertainties. Second, we do not maintain a candidate policy
but approximate the optimal value instead. Since our knowledge about the optimal
policy is imperfect, so is our knowledge about the optimal value. Both uncertainties

129

Chapter 6 Discussion and Future Work

are captured in the distribution p(𝐽∗ | 𝐬0).

To formulate an equivalent of the marginal likelihood, we can bound the optimal value
function. We assume without loss of generality that the reward function is bounded
and that max𝐬 𝑟(𝐬) = 0. Then we have that

∀𝐬∀𝝅 ∶ 𝐽 𝜋(𝐬) ≤ 𝐽 𝜋
∗
(𝐬) ≤ 𝐽max ≔

𝑇
∑
𝑡=0

𝛾 𝑡 ⋅ 0 = 0, (6.4)

that is, any arbitrary policy will achieve a value less than or equal to the optimal
policy and the optimal value can never be higher than the sum of maximum achievable
rewards. The graphical model implies the marginal likelihood

p(𝐉𝜋
∗
| 𝐬0) = ∫ p(𝐉𝜋∗ | 𝐉)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Likelihood

p(𝐉 |𝝅∗, 𝐬0, 𝐟)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Trajectory

p(𝝅∗, 𝐟)⏟⏟⏟⏟⏟⏟⏟⏟⏟
System

d𝐉 d𝝅∗ d𝐟 d𝐬0, (6.5)

≥ ∫ p(𝐉max | 𝐉) p(𝐉 |𝝅∗, 𝐬0, 𝐟) p(𝝅∗, 𝐟) d𝐉 d𝝅∗ d𝐟 d𝐬0, (6.6)

where the inequality is implied by (6.4) if the likelihood is monotonically decreasing
with distance. Both the trajectory and the system terms have a clear interpretation, as
they represent the recurrent structure and the function approximators, respectively. It
is not clear, however, how to interpret the likelihood term. Given the value estimate 𝐉,
this term encapsulates an estimation of closeness to the optimal value and must encode
that the optimal value is the highest possible value.

We now assume variational distributions q(𝐟) and q(𝝅∗) introduced by the sparse GP
formulations in Section 2.7. Analogously to the derivation of the DSVI-bound in (2.89)
we get

log p(𝐉𝜋
∗
| 𝐬0) ≥ log p(𝐉max | 𝐬0)

= log∫ p(𝐉max | 𝐉) p(𝐉 |𝝅∗, 𝐬0, 𝐟) p(𝝅∗, 𝐟) d𝐉 d𝝅∗ d𝐟 d𝐬0

≥ 𝔼q(𝐬0,…,𝐬𝑇)[log∫ p(𝐉max | 𝐉) p(𝐉 | 𝐬0, … , 𝐬𝑇)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Deterministic

d𝐉] − 𝑇 ⋅ klterm

= 𝔼q(𝐉)[log p(𝐉max | 𝐉)] − 𝑇 ⋅ klterm,

(6.7)

with klterm = KL(q(𝝅∗) ‖ p(𝝅∗)) + KL(q(𝐟) ‖ p(𝐟)) multiplied by 𝑇 due to the recurrent
structure. The distribution q(𝐉) can easily be sampled from q(𝐬0, … , 𝐬𝑇) using the
definition of the value function. A sample from q(𝐬0, … , 𝐬𝑇) can be drawn via the usual

130

6.3 Bayesian Reinforcement Learning

−1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

Vel
oci

ty

Position

H
ei
gh

t

Figure 6.5: The core components of the mountaincar benchmark. The task is to drive an
underpowered car up a mountain. The car has a one-dimensional position and velocity value
and the agent can accelerate to the left or right. A successful policy must build momentum
by first moving away from the goal to the right.

ancestral sampling scheme employed by DSVI. Assuming that the sufficient statistics
assumption holds for both 𝝅∗ and 𝐟, the optimal policy still maximizes variational
lower bound if p(𝐉max | 𝐉) is monotonous. We choose an exponential likelihood, that
is

p(𝐉max | 𝐉) ≔ 𝜆 exp(−𝜆(𝐉max − 𝐉))
= 𝜆 exp(𝜆𝐉),

(6.8)

since 𝐉max = 0. With 𝜆 = 1, the bound in (6.7) reduces to

𝔼q(𝐉)[log p(𝐉max | 𝐉)] − 𝑇 ⋅ klterm
= 𝔼q(𝐉)[log exp(𝐉)] − 𝑇 ⋅ klterm
= 𝔼q(𝐉)[𝐉] − 𝑇 ⋅ KL(q(𝝅∗) ‖ p(𝝅∗)) + const.

(6.9)

This bound is similar to a standard policy iteration scheme but is also subject to the
prior on 𝝅∗.

As an example, we consider the mountain car system [79, 111]. Figure 6.5 visualizes
the task of driving an underpowered car up a mountain. The car’s engine is not strong
enough to overcome the slope, and a successful agent must first drive away from the
goal on the right to build momentum. The current state of the benchmark is described

131

Chapter 6 Discussion and Future Work

−3

0

3
Ve

lo
ci
ty

Mean Action

-1

0

1
Action Uncertainty

0

1

2

−3

0

3

Ve
lo
ci
ty

-1

0

1

0

1

2

−2 0 2
−3

0

3

Position

Ve
lo
ci
ty

-1

0

1

−2 0 2
Position

0

1

2

Figure 6.6: Bayesian belief about an optimal mountaincar policy after 1, 10 and 25 iterations
(top to bottom). Starting off with an uninformed policy, the critical areas of the benchmark
are quickly identified and the policy becomes certain about the correct action. Other areas
remain uncertain, implying that the states are either never reached, or all actions lead to
success.

132

6.4 Future Work

by the one-dimensional position and velocity of the car, and the agent can accelerate
the car in either direction.

We train a dynamics model with random observations of the system and maximize the
variational bound in (6.7) to find an optimal policy to solve the benchmark problem.
Figure 6.6 shows how the Bayesian belief about the optimal policy evolves during
optimization of the bound. Starting off with an uninformed policy for which all actions
are plausible in all states, the approximation of the optimal value is very uncertain and
uninformed. During training, the areas in the input space that are relevant for solving
the task emerge, and a successful policy is found that oscillates in the valley to build
momentum and overcome the mountain. The inference scheme also uncovers areas in
the input space, where uncertainty about the optimal policy is never reduced. Since
this policy representation is used to parameterize the optimal value, these states are
not relevant for a good approximation. In other words, these states are either never
reached, or all actions lead to success.

Formulating policy search as an inference problem over the optimal value allows us to
automatically uncover which parts of a system are relevant to solving a task. Similar
to a surrogate in BO not needing to fully represent complicated structure away from
the optimum, both a dynamics model and a policy representation need not understand
a system fully to solve a reinforcement learning task. Separating a system in relevant
and irrelevant parts to steer exploration or policy search are promising directions of
research.

6.4 Future Work

Taking the step to apply machine learning in the physical world is one of the most
important challenges for machine learning today. ML-systems that operate in safety-
critical areas, interact with people, or carry responsibility must be robust, trustworthy,
and assessable. This thesis explored how structured Gaussian process models can be
used to formalize abstract knowledge about hierarchical systems and gain new insights
from data. Future research will allow us to generalize these results and explore the
following questions:

• How do we formulate data-efficient models together with domain experts?

• How do we ensure models can be trusted to take responsibility?

• How do we implement models to yield robust results?

133

Chapter 6 Discussion and Future Work

Machine learning models can be effective tools for communication with experts if
they allow an extensive inspection to achieve interpretability. Formulating principled
generative models based on expert understanding allows us to reproduce abstract
expectations, and combining such models with data allows us to gain new insights
about the badly understood components of a system. In Sections 6.2 and 6.3 we
discussed approaches to including downstream tasks in modeling problems. Bayesian
learning in pipelines of tasks is an active area of study in probabilistic numerics [26],
where multiple numerical algorithms are applied in succession. It is an interesting
research question how these ideas can be implemented inmore general problem settings
where priors and expectations are less well defined.

In Bayesian inference, a model is typically evaluated with respect to a subjective
prior belief and the likelihood of observations which are typically assumed to be
independent. Hierarchical models are often formulatedwith components that have clear
responsibilities to allow experts to independently reason about the prior assumptions
of the different parts of a model. However, we have seen in Section 6.1 that once
we include compositions of general function approximators in a generative model,
strong dependency structures emerge, and reasoning about priors is difficult [43].
Future work will explore how to constrain hierarchical models beyond componentwise
structural assumptions. Hierarchical models such as the alignment model in Chapter 4
can show rich and expert-interpretable structure in the shape of samples drawn from
generative models. One interesting direction of research is to explore how to formalize
expectations about such samples as a new way to place constraints on the internal
structure of hierarchical models.

Interpretable models and principled uncertainty propagation often require costly com-
putations. To implement models in practice, we need to rely on more efficient ap-
proximations, which can limit the range of representable solutions. As we have seen
in Section 6.1, the current approaches to inference in deep Gaussian process models
cannot represent complex hierarchical posteriors well, and more expressive alternatives
tend to be computationally expensive. The search for efficient and expressive inference
schemes for Gaussian processes is an active area of research [93, 98, 123] and a natural
future direction of research is to ask how such schemes can be extended to hierarchical
models. Another interesting question is how to combine the advantages of princi-
pled generative models with computationally efficient alternatives. Large parametric
models such as Bayesian neural networks (BNN) allow large-scale inference and fast
predictions at the cost of badly understood prior assumptions. Recent work [109]
explored how to place Gaussian process priors on BNN models. It would be interesting
to extend these ideas to more informative structural priors.

134

Bibliography

[1] Martín Abadi et al. “TensorFlow: Large-Scale Machine Learning on Heteroge-
neous Systems”. In: (2015).

[2] Mauricio Alvarez and Neil D. Lawrence. “Sparse convolved Gaussian processes
for multi-output regression”. In: Advances in neural information processing
systems. 2009, pp. 57–64.

[3] Mauricio A. Alvarez, David Luengo, Michalis K. Titsias, and Neil D. Lawrence.
“Efficient Multioutput Gaussian Processes through Variational Inducing Ker-
nels.” In: AISTATS. Vol. 9. 2010, pp. 25–32.

[4] Mauricio A. Alvarez, Lorenzo Rosasco, and Neil D. Lawrence. Kernels for
Vector-Valued Functions: a Review. June 30, 2011. arXiv: 1106 . 6251 [cs,
math, stat]. url: http://arxiv.org/abs/1106.6251 (visited on
02/06/2017).

[5] Andrew Gelman. Bayesian Data Analysis (Chapman & Hall/CRC Texts in Statis-
tical Science). Chapman and Hall/CRC, Nov. 27, 2013.

[6] Karl J. Åström. Introduction to Stochastic Control Theory. Elsevier, Feb. 27, 1971.
318 pp. isbn: 978-0-08-095579-7.

[7] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-
lation by jointly learning to align and translate. 2014. arXiv: 1409.0473.

[8] Yaakov Bar-Shalom, Thomas E. Fortmann, and Peter G. Cable. “Tracking and
Data Association”. In: The Journal of the Acoustical Society of America 87.2
(Feb. 1, 1990), pp. 918–919. issn: 0001-4966. doi: 10.1121/1.398863.

[9] A. G. Barto, R. S. Sutton, and C. W. Anderson. “Neuronlike adaptive elements
that can solve difficult learning control problems”. In: IEEE Transactions on
Systems, Man, and Cybernetics SMC-13.5 (Sept. 1983), pp. 834–846. issn: 0018-
9472. doi: 10.1109/TSMC.1983.6313077.

[10] J. Bernardo, J. Berger, A. Dawid, and A. Smith. “Regression and classification
using Gaussian process priors”. In: Bayesian statistics 6 (1998), p. 475.

135

https://arxiv.org/abs/1106.6251
https://arxiv.org/abs/1106.6251
http://arxiv.org/abs/1106.6251
https://arxiv.org/abs/1409.0473
https://doi.org/10.1121/1.398863
https://doi.org/10.1109/TSMC.1983.6313077

Bibliography

[11] Christopher Berner et al. Dota 2 with large scale deep reinforcement learning.
2019. arXiv: 1912.06680.

[12] Christopher M. Bishop. Mixture density networks. 1994.

[13] Christopher M. Bishop. Pattern Recognition and Machine Learning. Apr. 28, 2007.

[14] Eilyan Bitar and Pete Seiler. “Coordinated control of a wind turbine array for
power maximization”. In: 2013 American Control Conference. 2013 American
Control Conference. June 2013, pp. 2898–2904. doi: 10.1109/ACC.2013.
6580274.

[15] Erik Bodin, Neill D. F. Campbell, and Carl Henrik Ek. Latent Gaussian Process
Regression. July 18, 2017. arXiv: 1707.05534 [cs, stat]. url: http://
arxiv.org/abs/1707.05534 (visited on 08/29/2017).

[16] Erik Bodin et al. “Modulating Surrogates for Bayesian Optimization”. In: Pro-
ceedings of the International Conference on Machine Learning (ICML) 119. Feb. 24,
2020. arXiv: 1906.11152.

[17] Phillip Boyle, Marcus Frean, Phillip Boyle, and Marcus Frean. Multiple output
gaussian process regression. 2005.

[18] Phillip Boyle and Marcus R. Frean. “Dependent Gaussian Processes.” In: NIPS.
Vol. 17. 2004, pp. 217–224.

[19] Leo Breiman. “Statistical modeling: The two cultures (with comments and a
rejoinder by the author)”. In: Statistical science 16.3 (2001), pp. 199–231.

[20] Greg Brockman et al. OpenAI Gym. June 5, 2016. arXiv: 1606.01540 [cs].
url: http://arxiv.org/abs/1606.01540 (visited on 09/24/2018).

[21] Ching-An Cheng and Byron Boots. “Variational Inference for Gaussian Process
Models with Linear Complexity”. In: Advances in Neural Information Processing
Systems 30. Ed. by I. Guyon et al. Curran Associates, Inc., 2017, pp. 5184–5194.

[22] Youngmin Cho and Lawrence K. Saul. “Kernel Methods for Deep Learning”.
In: Advances in Neural Information Processing Systems 22. Ed. by Y. Bengio, D.
Schuurmans, J. D. Lafferty, C. K. I. Williams, and A. Culotta. Curran Associates,
Inc., 2009, pp. 342–350.

[23] Sungjoon Choi, Sanghoon Hong, and Sungbin Lim. ChoiceNet: Robust Learn-
ing by Revealing Output Correlations. May 16, 2018. arXiv: 1805 . 06431
[cs, stat]. url: http : / / arxiv . org / abs / 1805 . 06431 (visited
on 08/23/2018).

136

https://arxiv.org/abs/1912.06680
https://doi.org/10.1109/ACC.2013.6580274
https://doi.org/10.1109/ACC.2013.6580274
https://arxiv.org/abs/1707.05534
http://arxiv.org/abs/1707.05534
http://arxiv.org/abs/1707.05534
https://arxiv.org/abs/1906.11152
https://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1805.06431
https://arxiv.org/abs/1805.06431
http://arxiv.org/abs/1805.06431

Bibliography

[24] Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and
Yoshua Bengio. Attention-Based Models for Speech Recognition. June 24, 2015.
arXiv: 1506.07503 [cs, stat]. url: http://arxiv.org/abs/1506.
07503 (visited on 08/17/2020).

[25] Timothy C. Coburn. Geostatistics for natural resources evaluation. Taylor &
Francis Group, 2000.

[26] Jon Cockayne, Chris Oates, Tim Sullivan, and Mark Girolami. “Bayesian Proba-
bilistic Numerical Methods”. In: SIAM Review 61.3 (Jan. 2019), pp. 756–789. issn:
0036-1445, 1095-7200. doi: 10.1137/17M1139357. arXiv: 1702.03673.

[27] The Event Horizon Telescope Collaboration et al. “First M87 Event Horizon
Telescope Results. III. Data Processing and Calibration”. In: The Astrophysical
Journal Letters 875.1 (Apr. 10, 2019), p. L3. issn: 2041-8205. doi: 10.3847/
2041-8213/ab0c57.

[28] The LIGO Scientific Collaboration and the Virgo Collaboration. “Observation
of Gravitational Waves from a Binary Black Hole Merger”. In: Physical Review
Letters 116.6 (Feb. 11, 2016), p. 061102. issn: 0031-9007, 1079-7114. doi: 10.
1103/PhysRevLett.116.061102. arXiv: 1602.03837.

[29] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. 2009.

[30] Ingemar J. Cox. “A review of statistical data association techniques for motion
correspondence”. In: International Journal of Computer Vision 10.1 (Feb. 1, 1993),
pp. 53–66. issn: 1573-1405. doi: 10.1007/BF01440847.

[31] Andreas Damianou. “Deep Gaussian processes and variational propagation of
uncertainty”. University of Sheffield, 2015.

[32] Andreas Damianou and Neil Lawrence. “Deep Gaussian Processes”. In: Artificial
Intelligence and Statistics. Artificial Intelligence and Statistics. Apr. 29, 2013,
pp. 207–215.

[33] Andreas C. Damianou, Michalis K. Titsias, and Neil D. Lawrence. Variational
Inference for Uncertainty on the Inputs of Gaussian Process Models. Sept. 8, 2014.
arXiv: 1409.2287 [cs, stat]. url: http://arxiv.org/abs/1409.
2287 (visited on 09/05/2016).

[34] Amit Daniely, Roy Frostig, and Yoram Singer. Toward Deeper Understanding of
Neural Networks: The Power of Initialization and a Dual View on Expressivity.
Feb. 18, 2016. arXiv: 1602 . 05897 [cs, stat]. url: http : / / arxiv .
org/abs/1602.05897 (visited on 03/21/2018).

137

https://arxiv.org/abs/1506.07503
http://arxiv.org/abs/1506.07503
http://arxiv.org/abs/1506.07503
https://doi.org/10.1137/17M1139357
https://arxiv.org/abs/1702.03673
https://doi.org/10.3847/2041-8213/ab0c57
https://doi.org/10.3847/2041-8213/ab0c57
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://arxiv.org/abs/1602.03837
https://doi.org/10.1007/BF01440847
https://arxiv.org/abs/1409.2287
http://arxiv.org/abs/1409.2287
http://arxiv.org/abs/1409.2287
https://arxiv.org/abs/1602.05897
http://arxiv.org/abs/1602.05897
http://arxiv.org/abs/1602.05897

Bibliography

[35] David Barber. Bayesian Reasoning and Machine Learning. Cambridge University
Press, Feb. 1, 2012. isbn: 978-0-521-51814-7.

[36] Marc Deisenroth and Carl E. Rasmussen. “PILCO: A model-based and data-
efficient approach to policy search”. In: Proceedings of the 28th International
Conference on machine learning (ICML-11). 2011, pp. 465–472.

[37] Marc Peter Deisenroth. “Efficient Reinforcement Learning using Gaussian Pro-
cesses”. KIT Scientific Publishing, 2010.

[38] Stefan Depeweg. “Modeling Epistemic and Aleatoric Uncertainty with Bayesian
Neural Networks and Latent Variables”. Dissertation. Munich: Technical Uni-
versity of Munich, 2019.

[40] Stefan Depeweg, Jose-Miguel Hernandez-Lobato, Finale Doshi-Velez, and Stef-
fen Udluft. “Decomposition of Uncertainty in Bayesian Deep Learning for
Efficient and Risk-sensitive Learning”. In: International Conference on Machine
Learning. 2018, pp. 1192–1201.

[41] Stefan Depeweg, JoséMiguel Hernández-Lobato, Finale Doshi-Velez, and Steffen
Udluft. Learning and Policy Search in Stochastic Dynamical Systems with Bayesian
Neural Networks. May 23, 2016. arXiv: 1605.07127 [cs, stat]. url: http:
//arxiv.org/abs/1605.07127 (visited on 02/19/2019).

[42] Simon Duane, Anthony D. Kennedy, Brian J. Pendleton, and Duncan Roweth.
“Hybrid monte carlo”. In: Physics letters B 195.2 (1987), pp. 216–222.

[43] David Duvenaud, Oren Rippel, Ryan P. Adams, and Zoubin Ghahramani. Avoid-
ing pathologies in very deep networks. Feb. 24, 2014. arXiv: 1402.5836 [cs,
stat]. url: http://arxiv.org/abs/1402.5836 (visited on 09/21/2016).

[44] Bradley Efron. “Modern science and the Bayesian-frequentist controversy”. In:
(2005).

[46] G. Fubini. “Sugli integrali multipli”. In: Accademia dei Lincei, Rendiconti, V. Serie
16.1 (1907), pp. 608–614. issn: 0001-4435.

[47] Yarin Gal. “Uncertainty in deep learning”. In: University of Cambridge 1.3 (2016).

[48] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Intro-
duction to Statistical Learning: With Applications in R (Springer Texts in Statistics).
Springer, Aug. 11, 2013. isbn: 978-1-4614-7137-0.

[50] Giulio D. Agostini. Bayesian Reasoning in Data Analysis: A Critical Introduction.
World Scientific Pub Co Inc, Aug. 1, 2003. isbn: 978-981-238-356-3.

138

https://arxiv.org/abs/1605.07127
http://arxiv.org/abs/1605.07127
http://arxiv.org/abs/1605.07127
https://arxiv.org/abs/1402.5836
https://arxiv.org/abs/1402.5836
http://arxiv.org/abs/1402.5836

Bibliography

[51] Javier González, Zhenwen Dai, Andreas Damianou, and Neil D. Lawrence.
“Preferential Bayesian optimization”. In: Proceedings of the 34th International
Conference on Machine Learning - Volume 70. ICML’17. Sydney, NSW, Australia:
JMLR.org, Aug. 6, 2017, pp. 1282–1291.

[52] Alexander Hans and Steffen Udluft. “Efficient uncertainty propagation for rein-
forcement learning with limited data”. In: International Conference on Artificial
Neural Networks. Springer, 2009, pp. 70–79.

[53] Marton Havasi, José Miguel Hernández-Lobato, and Juan José Murillo-Fuentes.
Inference in Deep Gaussian Processes using Stochastic Gradient Hamiltonian
Monte Carlo. June 14, 2018. arXiv: 1806.05490 [cs, stat]. url: http:
//arxiv.org/abs/1806.05490 (visited on 06/21/2018).

[54] Daniel Hein. “Interpretable Reinforcement Learning Policies by Evolutionary
Computation”. Dissertation. Munich: Technical University of Munich, 2019.
160 pp.

[55] Daniel Hein et al. “A benchmark environment motivated by industrial control
problems”. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI).
2017 IEEE Symposium Series on Computational Intelligence (SSCI). Honolulu,
HI: IEEE, Nov. 2017, pp. 1–8. isbn: 978-1-5386-2726-6. doi: 10.1109/SSCI.
2017.8280935.

[56] James Hensman, Nicolo Fusi, and Neil D. Lawrence. “Gaussian Processes for
Big Data”. In: Uncertainty in Artificial Intelligence. Citeseer, 2013, p. 282.

[57] James Hensman and Neil D. Lawrence. Nested Variational Compression in Deep
Gaussian Processes. Dec. 3, 2014. arXiv: 1412 . 1370 [stat]. url: http :
//arxiv.org/abs/1412.1370 (visited on 07/19/2017).

[58] James Hensman, Alexander G Matthews, Maurizio Filippone, and Zoubin
Ghahramani. “MCMC for Variationally Sparse Gaussian Processes”. In: Ad-
vances in Neural Information Processing Systems 28. Ed. by C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett. Curran Associates, Inc., 2015,
pp. 1648–1656.

[59] James Hensman, Alexander G. de G. Matthews, and Zoubin Ghahramani. “Scal-
able variational Gaussian process classification”. In: Journal of Machine Learning
Research 38 (2015), pp. 351–360.

[60] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neu-
ral computation 9.8 (1997), pp. 1735–1780.

139

https://arxiv.org/abs/1806.05490
http://arxiv.org/abs/1806.05490
http://arxiv.org/abs/1806.05490
https://doi.org/10.1109/SSCI.2017.8280935
https://doi.org/10.1109/SSCI.2017.8280935
https://arxiv.org/abs/1412.1370
http://arxiv.org/abs/1412.1370
http://arxiv.org/abs/1412.1370

Bibliography

[61] Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton.
“Adaptive mixtures of local experts”. In: Neural computation 3.1 (1991), pp. 79–
87.

[62] Rodolphe Jenatton, Cedric Archambeau, Javier Gonzalez, and Matthias Seeger.
“Bayesian optimization with tree-structured dependencies”. In: Proceedings of
the 34th International Conference on Machine Learning - Volume 70. ICML’17.
Sydney, NSW, Australia: JMLR.org, Aug. 6, 2017, pp. 1655–1664.

[63] Melvin Johnson et al. “Google’s multilingual neural machine translation sys-
tem: Enabling zero-shot translation”. In: Transactions of the Association for
Computational Linguistics 5 (2017), pp. 339–351.

[64] Andre G. Journel and Ch J. Huijbregts. Mining geostatistics. Academic press,
1978.

[65] Markus Kaiser, ClemensOtte, ThomasA. Runkler, and Carl Henrik Ek. “Bayesian
Alignments of Warped Multi-Output Gaussian Processes”. In: Advances in Neu-
ral Information Processing Systems 31. Ed. by S. Bengio et al. Curran Associates,
Inc., 2018, pp. 6995–7004. arXiv: 1710.02766.

[66] Markus Kaiser, ClemensOtte, ThomasA. Runkler, and Carl Henrik Ek. “Bayesian
Decomposition of Multi-Modal Dynamical Systems for Reinforcement Learn-
ing”. In: Neurocomputing (Apr. 10, 2020). issn: 0925-2312. doi: 10.1016/j.
neucom.2019.12.132.

[67] Markus Kaiser, Clemens Otte, Thomas A. Runkler, and Carl Henrik Ek. “Data
Association with Gaussian Processes”. In: Proceedings of the European Conference
on Machine Learning and Knowledge Discovery in Databases (ECML PKDD) 2019.
Sept. 2019. arXiv: 1810.07158.

[68] Markus Kaiser, Clemens Otte, Thomas A. Runkler, and Carl Henrik Ek. “In-
terpretable Dynamics Models for Data-Efficient Reinforcement Learning”. In:
Computational Intelligence and Machine Learning ESANN 2019 proceedings
(2019), p. 6.

[70] Diederik P Kingma, Tim Salimans, and Max Welling. “Variational Dropout
and the Local Reparameterization Trick”. In: Advances in Neural Information
Processing Systems 28. Ed. by C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
and R. Garnett. Curran Associates, Inc., 2015, pp. 2575–2583.

[71] John R. Koza and John R. Koza. Genetic programming: on the programming of
computers by means of natural selection. Vol. 1. MIT press, 1992.

[72] Sascha Lange, Thomas Gabel, and Martin Riedmiller. “Batch reinforcement
learning”. In: Reinforcement learning. Springer, 2012, pp. 45–73.

140

https://arxiv.org/abs/1710.02766
https://doi.org/10.1016/j.neucom.2019.12.132
https://doi.org/10.1016/j.neucom.2019.12.132
https://arxiv.org/abs/1810.07158

Bibliography

[73] Neil D. Lawrence and Andrew J. Moore. “Hierarchical Gaussian process latent
variable models”. In: Proceedings of the 24th international conference on Machine
learning. 2007, pp. 481–488.

[74] Miguel Lázaro-Gredilla. “Bayesian warped Gaussian processes”. In: Advances in
Neural Information Processing Systems. 2012, pp. 1619–1627.

[75] Miguel Lázaro-Gredilla, Steven Van Vaerenbergh, and Neil D. Lawrence. “Over-
lapping mixtures of Gaussian processes for the data association problem”. In:
Pattern Recognition 45.4 (2012), pp. 1386–1395.

[76] Yann LeCun et al. “Backpropagation applied to handwritten zip code recogni-
tion”. In: Neural computation 1.4 (1989), pp. 541–551.

[77] Chris J. Maddison, Andriy Mnih, and YeeWhye Teh. The Concrete Distribution: A
Continuous Relaxation of Discrete Random Variables. Nov. 2, 2016. arXiv: 1611.
00712 [cs, stat]. url: http : / / arxiv . org / abs / 1611 . 00712
(visited on 09/12/2018).

[78] Thomas P. Minka. “Expectation Propagation for approximate Bayesian infer-
ence”. In: Proceedings of the Seventeenth conference on Uncertainty in artifi-
cial intelligence. Morgan Kaufmann Publishers Inc., 2001, pp. 362–369. arXiv:
1301.2294.

[79] Andrew William Moore. “Efficient memory-based learning for robot control”.
In: (1990).

[80] N. Morgan and H. Bourlard. “Generalization and Parameter Estimation in
Feedforward Nets: Some Experiments”. In: Advances in Neural Information
Processing Systems 2. Ed. by D. S. Touretzky. Morgan-Kaufmann, 1990, pp. 630–
637.

[81] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press,
Aug. 24, 2012. 1098 pp. isbn: 978-0-262-01802-9.

[82] Vilém Novák, Irina Perfilieva, and Jiri Mockor. Mathematical principles of fuzzy
logic. Vol. 517. Springer Science & Business Media, 2012.

[83] C. J. Oates and T. J. Sullivan. A Modern Retrospective on Probabilistic Numerics.
Jan. 14, 2019. arXiv: 1901.04457 [math, stat]. url: http://arxiv.
org/abs/1901.04457 (visited on 10/02/2019).

[84] Kaare Brandt Petersen, Michael Syskind Pedersen, et al. “The matrix cookbook”.
In: Technical University of Denmark 7 (2008), p. 15.

141

https://arxiv.org/abs/1611.00712
https://arxiv.org/abs/1611.00712
http://arxiv.org/abs/1611.00712
https://arxiv.org/abs/1301.2294
https://arxiv.org/abs/1901.04457
http://arxiv.org/abs/1901.04457
http://arxiv.org/abs/1901.04457

Bibliography

[85] Tobias Pfingsten, Malte Kuss, and Carl Edward Rasmussen. “Nonstationary
gaussian process regression using a latent extension of the input space”. In:
Eighth World Meeting of the International Society for Bayesian Analysis (ISBA
2006). 2006.

[86] Carl E. Rasmussen and Zoubin Ghahramani. “Infinite Mixtures of Gaussian
Process Experts”. In: Advances in Neural Information Processing Systems 14. Ed.
by T. G. Dietterich, S. Becker, and Z. Ghahramani. MIT Press, 2002, pp. 881–888.

[87] Carl Edward Rasmussen. Gaussian processes for machine learning. 2006.
[88] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. “Stochastic

Backpropagation and Approximate Inference in Deep Generative Models”. In:
(Jan. 16, 2014).

[89] Martin Riedmiller. “Neural fitted Q iteration - first experiences with a data
efficient neural reinforcement learning method”. In: European Conference on
Machine Learning. Springer, 2005, pp. 317–328.

[90] Simone Rossi, Markus Heinonen, Edwin V. Bonilla, Zheyang Shen, andMaurizio
Filippone. Rethinking Sparse Gaussian Processes: Bayesian Approaches to Inducing-
Variable Approximations. Mar. 9, 2020. arXiv: 2003.03080 [cs, stat]. url:
http://arxiv.org/abs/2003.03080 (visited on 03/14/2020).

[91] Cynthia Rudin. “Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead”. In: Nature Machine
Intelligence 1.5 (5 May 2019), pp. 206–215. issn: 2522-5839. doi: 10.1038/
s42256-019-0048-x.

[92] Olga Russakovsky et al. ImageNet Large Scale Visual Recognition Challenge.
Jan. 29, 2015. arXiv: 1409.0575 [cs]. url: http://arxiv.org/abs/
1409.0575 (visited on 08/17/2020).

[93] Hugh Salimbeni, Ching-An Cheng, Byron Boots, and Marc Deisenroth. Orthog-
onally Decoupled Variational Gaussian Processes. Sept. 24, 2018. arXiv: 1809.
08820 [cs, stat]. url: http://arxiv.org/abs/1809.08820 (vis-
ited on 10/16/2018).

[94] Hugh Salimbeni and Marc Deisenroth. “Doubly Stochastic Variational Inference
for Deep Gaussian Processes”. In: Advances in Neural Information Processing
Systems 30. Ed. by I. Guyon et al. Curran Associates, Inc., 2017, pp. 4588–4599.

[95] J G Schepers and S P van der Pijl. “Improved modelling of wake aerodynamics
and assessment of new farm control strategies”. In: Journal of Physics: Conference
Series 75 (July 1, 2007), p. 012039. issn: 1742-6596. doi: 10 . 1088 / 1742 -
6596/75/1/012039.

142

https://arxiv.org/abs/2003.03080
http://arxiv.org/abs/2003.03080
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://arxiv.org/abs/1409.0575
http://arxiv.org/abs/1409.0575
http://arxiv.org/abs/1409.0575
https://arxiv.org/abs/1809.08820
https://arxiv.org/abs/1809.08820
http://arxiv.org/abs/1809.08820
https://doi.org/10.1088/1742-6596/75/1/012039
https://doi.org/10.1088/1742-6596/75/1/012039

Bibliography

[96] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. “Taking the
Human Out of the Loop: A Review of Bayesian Optimization”. In: Proceedings
of the IEEE 104.1 (Jan. 2016), pp. 148–175. issn: 0018-9219. doi: 10.1109/
JPROC.2015.2494218.

[97] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning.
2014.

[98] Jiaxin Shi, Michalis K. Titsias, andAndriyMnih. Sparse Orthogonal Variational In-
ference for Gaussian Processes. Feb. 29, 2020. arXiv: 1910.10596 [cs, stat].
url: http://arxiv.org/abs/1910.10596 (visited on 03/03/2020).

[99] Galit Shmueli. “To explain or to predict?” In: Statistical science 25.3 (2010),
pp. 289–310.

[100] David Silver et al. “Mastering the game of Go with deep neural networks and
tree search”. In: Nature 529.7587 (Jan. 28, 2016), pp. 484–489. issn: 0028-0836.
doi: 10.1038/nature16961.

[101] Edward Snelson and Zoubin Ghahramani. “Sparse Gaussian processes using
pseudo-inputs”. In: Advances in neural information processing systems. 2005,
pp. 1257–1264.

[102] Edward Snelson, Carl Edward Rasmussen, and Zoubin Ghahramani. “Warped
gaussian processes”. In: Advances in neural information processing systems 16
(2004), pp. 337–344.

[103] Edward Lloyd Snelson. “Flexible and efficient Gaussian process models for
machine learning”. Citeseer, 2007.

[104] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. “Practical Bayesian Opti-
mization of Machine Learning Algorithms”. In: Advances in Neural Information
Processing Systems 25. Ed. by F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger. Curran Associates, Inc., 2012, pp. 2951–2959.

[105] Jasper Snoek, Kevin Swersky, Richard S. Zemel, and Ryan P. Adams. Input
Warping for Bayesian Optimization of Non-stationary Functions. Feb. 4, 2014.
arXiv: 1402.0929 [cs, stat]. url: http://arxiv.org/abs/1402.
0929 (visited on 07/31/2017).

[106] Maryam Soleimanzadeh and Rafael Wisniewski. “Controller design for a wind
farm, considering both power and load aspects”. In: Mechatronics 21.4 (June 1,
2011), pp. 720–727. issn: 0957-4158. doi: 10.1016/j.mechatronics.2011.
02.008.

143

https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1109/JPROC.2015.2494218
https://arxiv.org/abs/1910.10596
http://arxiv.org/abs/1910.10596
https://doi.org/10.1038/nature16961
https://arxiv.org/abs/1402.0929
http://arxiv.org/abs/1402.0929
http://arxiv.org/abs/1402.0929
https://doi.org/10.1016/j.mechatronics.2011.02.008
https://doi.org/10.1016/j.mechatronics.2011.02.008

Bibliography

[107] The CMS Sollaboration and The LHCb Collaboration. “Observation of the
rare Bs0 to Mu+ Mu- decay from the combined analysis of CMS and LHCb
data”. In: Nature 522.7554 (7554 June 2015), pp. 68–72. issn: 1476-4687. doi:
10.1038/nature14474.

[108] Mervyn Stone. “Cross-validatory choice and assessment of statistical predic-
tions”. In: Journal of the Royal Statistical Society: Series B (Methodological) 36.2
(1974), pp. 111–133.

[109] Shengyang Sun, Guodong Zhang, Jiaxin Shi, and Roger Grosse. Functional
Variational Bayesian Neural Networks. Mar. 13, 2019. arXiv: 1903 . 05779
[cs, stat]. url: http://arxiv.org/abs/1903.05779 (visited on
12/13/2019).

[110] Richard S. Sutton. The Bitter Lesson. Mar. 13, 2019. url: http://incompleteideas.
net/IncIdeas/BitterLesson.html (visited on 08/14/2020).

[111] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: an introduction.
2nd ed. Adaptive computation and machine learning. Cambridge, Mass: MIT
Press, 2018. 322 pp. isbn: 978-0-262-19398-6.

[112] William M. Thorburn. “Occam’s razor”. In: Mind 24.2 (1915), pp. 287–288.

[113] Michalis K. Titsias. “Variational Learning of Inducing Variables in Sparse Gaus-
sian Processes.” In: AISTATS. Vol. 5. 2009, pp. 567–574.

[114] Michalis K. Titsias and Neil D. Lawrence. “Bayesian Gaussian process latent vari-
able model”. In: International Conference on Artificial Intelligence and Statistics.
2010, pp. 844–851.

[115] Volker Tresp. “Mixtures of Gaussian Processes”. In: Advances in Neural Infor-
mation Processing Systems 13. Ed. by T. K. Leen, T. G. Dietterich, and V. Tresp.
MIT Press, 2001, pp. 654–660.

[116] Volker Tresp. “The wet game of chicken”. In: Siemens AG, CT IC 4, Technical
Report (1994).

[117] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Sta-
tistical Learning: Data Mining, Inference, and Prediction. Springer Science &
Business Media, Nov. 10, 2013. isbn: 978-0-387-21606-5.

[118] Ivan Ustyuzhaninov et al. “Compositional Uncertainty in Deep Gaussian Pro-
cesses”. In: Proceedings of the 36th Conference on Uncertainty in Artificial Intelli-
gence (UAI). Feb. 25, 2020. arXiv: 1909.07698.

144

https://doi.org/10.1038/nature14474
https://arxiv.org/abs/1903.05779
https://arxiv.org/abs/1903.05779
http://arxiv.org/abs/1903.05779
http://incompleteideas.net/IncIdeas/BitterLesson.html
http://incompleteideas.net/IncIdeas/BitterLesson.html
https://arxiv.org/abs/1909.07698

Bibliography

[119] V. Vapnik. “Principles of Risk Minimization for Learning Theory”. In: Advances
in Neural Information Processing Systems 4. Ed. by J. E. Moody, S. J. Hanson, and
R. P. Lippmann. Morgan-Kaufmann, 1992, pp. 831–838.

[120] Chunyi Wang and Radford M. Neal. Gaussian Process Regression with Het-
eroscedastic or Non-Gaussian Residuals. Dec. 26, 2012. arXiv: 1212 . 6246
[cs, stat]. url: http://arxiv.org/abs/1212.6246 (visited on
04/16/2020).

[121] Edward Waring. “Vii. problems concerning interpolations”. In: Philosophical
transactions of the royal society of London 69 (1779), pp. 59–67.

[122] Andrew Gordon Wilson and Hannes Nickisch. Kernel Interpolation for Scalable
Structured Gaussian Processes (KISS-GP). Mar. 3, 2015. arXiv: 1503 . 01057
[cs, stat]. url: http://arxiv.org/abs/1503.01057 (visited on
09/18/2017).

[123] James T. Wilson, Viacheslav Borovitskiy, Alexander Terenin, Peter Mostowsky,
and Marc Peter Deisenroth. Efficiently Sampling Functions from Gaussian Process
Posteriors. July 1, 2020. arXiv: 2002.09309 [cs, stat]. url: http://
arxiv.org/abs/2002.09309 (visited on 07/24/2020).

[124] Fariba Yousefi, Zhenwen Dai, Carl Henrik Ek, and Neil Lawrence. Unsupervised
Learning with Imbalanced Data via Structure Consolidation Latent Variable Model.
June 30, 2016. arXiv: 1607 . 00067 [cs, stat]. url: http : / / arxiv .
org/abs/1607.00067 (visited on 09/05/2016).

[125] Feng Zhou and Fernando De la Torre. “Generalized time warping for multi-
modal alignment of humanmotion”. In: Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on. IEEE, 2012, pp. 1282–1289.

145

https://arxiv.org/abs/1212.6246
https://arxiv.org/abs/1212.6246
http://arxiv.org/abs/1212.6246
https://arxiv.org/abs/1503.01057
https://arxiv.org/abs/1503.01057
http://arxiv.org/abs/1503.01057
https://arxiv.org/abs/2002.09309
http://arxiv.org/abs/2002.09309
http://arxiv.org/abs/2002.09309
https://arxiv.org/abs/1607.00067
http://arxiv.org/abs/1607.00067
http://arxiv.org/abs/1607.00067

List of Figures

2.1 Algorithms for interpolation . 12
2.2 Polynomial regression . 14
2.3 Statistical learning . 16
2.4 Bayesian linear regression posteriors 29
2.5 Graphical model: Gaussian process 33
2.6 Samples from GP priors . 36
2.7 GP posterior . 39
2.8 FITC sparse GP approximation . 43
2.9 Graphical model: Variational sparse GP 45
2.10 Variational GP posteriors . 50
2.11 Graphical model: Deep GP . 53

3.1 A data association problem . 60
3.2 Graphical model: Data association GP 61
3.3 Noise separation experiment . 71
3.4 Multimodality experiment . 72
3.5 Symmetries in DAGP models . 75

4.1 Graphical model: Aligned multi-output GP 81
4.2 Artificial composite data . 82
4.3 Artificial composite experiment . 88
4.4 Comparison of samples from wind-turbine models 91
4.5 Wind-turbine experiment . 92
4.6 Variational bound loseness I . 94
4.7 Variational bound loseness II . 95

5.1 Wet-Chicken dynamics . 102
5.2 Graphical model: Wet-chicken RL system 104
5.3 Graphical model: Wet-chicken dynamics model 105
5.4 Wet-chicken dynamics separation . 109
5.5 Linear cuts through a wet-chicken dynamics model 110
5.6 A successful wet-chicken policy . 112

147

List of Figures

5.7 A conservative wet-chicken policy . 113
5.8 Model-misspecification experiment 116

6.1 Rotated squares example . 123
6.2 Three layer identity function . 123
6.3 Comparison of BO surrogates . 126
6.4 Graphical model: Policy search as a hierarchical GP 129
6.5 The mountaincar system . 131
6.6 A probabilistic mountaincar policy 132

148

List of Tables

1.1 Research questions . 6

3.1 Comparison of DAGP to similar models 68
3.2 Noise separation experiment . 70
3.3 Cart-pole experiment . 73

4.1 Alignment experiments . 90

5.1 Wet-chicken experiment . 112
5.2 Wet-chicken reward shaping experiment 113
5.3 Model-misspecification experiment 117

6.1 Statistical learning methodology in reinforcement learning 128

149

	Zusammenfassung
	Abstract
	Acknowledgements
	Introduction
	Black-box models in deep learning
	White-box models in Bayesian statistics
	Structured models with Gaussian processes
	Contributions
	Thesis outline

	Preliminaries
	Machine learning problems
	Statistical learning
	Bayesian machine learning
	Gaussian processes
	Sparse Gaussian processes with inducing points
	Variational sparse Gaussian process approximations
	Hierarchical Gaussian processes

	Data association
	Data association with Gaussian processes
	Variational approximation
	Experiments
	Discussion

	Non-linear time-series alignment
	Aligned multi-output Gaussian processes
	Variational approximation
	Model interpretation
	Experiments
	Discussion

	Interpretable reinforcement learning
	The wet-chicken benchmark
	Probabilistic policy search
	Experiments
	Discussion

	Discussion and future work
	Inference in hierarchical models
	Surrogate models for Bayesian optimization
	Bayesian Reinforcement Learning
	Future work

	Bibliography
	List of Figures
	List of Tables

