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Abstract
Power diagrams are a generalization of Voronoi diagrams which define a cell decompo-
sition of an euclidean space based on a finite set of spheres, assigning every sphere a
polyhedral cell for which it minimizes the power function of the points with respect to
all spheres. This interdisciplinary project is concerned with the implementation of an
algorithm that yields the incidence structure of such a diagram. First, power diagrams
are introduced and some fundamental results provided. It continues with the investi-
gation of the close relationship of power diagrams in d dimensions to arrangements
of hyperplanes in d + 1 dimensions and the convex hull of points obtained via their
polarization. This connection gives rise to an efficient algorithm for computing power
diagrams, for which both a formal definition and the description of an implementation
is presented.
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Chapter 1

Introduction

Power diagrams define a cell decomposition of the euclidean space Rd into cells defined
by a finite set of spheres. A point is part of the cell of some sphere if there is no other
sphere for which the power of the point with respect to the sphere is lower. They
can be understood as a generalization of Voronoi diagrams with a different distance
function with respect to the sphere centers.
Power diagrams can be used to solve geometric problems like finding the volume

of a union of spheres [ABI88] or to solve packing problems with spheres [Tot72].
Applications outside of geometry include the solution of weighted balanced clusterings
[BG12] and the description of the internal structure of polycrytals [Alp+15].
A way of describing a power diagram is via the adjacency structure of the different

cells. Two cells are adjacent if they share points which have the same minimizing power
with respect to both spheres. In the euclidean case, they share a polyhedron which
is incident to both cells. This interdisciplinary project is concerned with describing
power diagrams formally, describing algorithms to construct such incidence structures
and implementing them in C++. The theoretical parts of this project are guided by a
paper by Aurenhammer [Aur87]. While all statements presented here can be found in
[Aur87], only the ones with an explicit citation contain a proof in the original paper.
For the other statements, proofs are provided as a service to the reader.
The first chapter of this paper defines power diagrams, introduces some geometric

notation and gives both geometric and algebraic interpretations of the distance metric
together with some fundamental results about power diagrams. Using a transforma-
tion from spheres to hyperplanes, the next chapter shows that there exists an affine
equivalency between power diagrams in d dimensions and polyhedra which can be
described as the intersection of halfspaces pointing upwards in d+ 1 dimensions. This
equivalency is used to also show a dual relationship between power diagrams in Rd and
the convex hull of a set of points in Rd+1, which can be exploited to give an efficient
algorithm to construct incidence structures of power diagrams. With incidence lattices,
a data structure to store them is introduced. In the last chapter of the paper, the
implementation of both the algorithms and the incidence lattices accompanying this
paper is described.
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Chapter 2

Power Diagrams

Power diagrams in d-dimensional Euclidean space Rd can be understood as a particular
generalization of the more well known Voronoi diagrams. A Voronoi diagram is a
cell decomposition of the space introduced by a finite set of points M ⊂ Rd and a
metric d(·, ·). It assigns every point p ∈ M its region of points for which there is no
point closer than p in M . Using the euclidean metric, these regions are guaranteed
to be polyhedra. The normal vectors of the hyperplanes at the boundaries are given
by the connecting line of neighbouring points with the hyperplane bisecting this line.
Figure 2.1 shows an example of a Voronoi diagram in d = 2 dimensions.
While obtaining the hyperplanes which potentially separate the regions is easy, it

must be identified which of them actually exist, since not every region is a neighbour
of every other region. It can be shown that there exists a dual relationship between
Voronoi diagrams in two dimensions and Delaunay triangulations [Aur91]. A Delaunay
triangulation of a set of points M is a graph in which three points form a clique iff
the smallest circle containing all three points does not contain any other point in M .
Two regions in the Voronoi diagram then are neighbours iff there exists an edge in the
Delaunay triangulation between their corresponding points.
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Figure 2.1: 2D Voronoi diagrams partition the plane into regions of points with a common
closest input point. The edges separating two regions can be calculated as the per-
pendicular bisector of the line connecting their centers. Two regions are neighbours if
there exists an edge between their points in the Delaunay triangulation of the same
set.
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Chapter 2 Power Diagrams

This gives rise to efficient algorithms for constructing the diagrams, since the
triangulations can be obtained in O(n logn) time by incrementally inserting points
into an existing triangulation. This algorithm was first described by Green and Sibson
[GS78] and is optimal, since one can reduce the sorting problem to finding triangulations
[Aur91]. Another algorithm to find Delaunay triangulation described by Aurenhammer
involves lifting the two dimensional input into three dimensions by projecting it to a
paraboloid. The triangulation can then be found by computing the convex hull of those
points, also yielding O(n logn) complexity in two dimensions. The efficient algorithm
presented in this paper is a generalization of this algorithm for power diagrams.

In this chapter, power diagrams will be defined in terms of the power of a point with
respect to a sphere. After introducing some geometric notation, some fundamental
results about power diagrams will be shown which in the next chapter can be used to
proof a relationship between power diagrams in d dimensions and polyhedra in d+ 1
dimensions.

2.1 Definition of Power Diagrams
There are multiple possible modifications of Voronoi diagrams, a few of which are
described in [Aur87]. To obtain power diagrams, each point p ∈M is assigned a weight
w(p), where a larger weight results in a larger cell. While the definition given here is
applicable to more general metrics, the results presented here assume the usage of the
euclidean metric d(x, y) = ‖x− y‖2.
The distance function to be minimized in Voronoi diagrams for points x ∈ Rd in a

cell is d(x, p). Power diagrams use the function d(x, p)2 − w(p). While other possible
combinations of distance and weight have also been investigated [Aur87], this definition
has a connection to the power of circles around the points p ∈M .
Definition 2.1 (Power of a Point)
The power of a point x ∈ Rd with respect to a sphere s = (p, r2) with center p ∈ Rd

and radius r ∈ R≥0 is given by

pow(x, s) = d(x, p)2 − r2. (2.1)

The power function was, for example, mentioned at the beginning of the 19th century
by Steiner [Ste81] and Laguerre [Bla13] as a measure of the relationship of a point to a
circle. A point has a negative power if inside, a positive power if outside and its power
vanishes if it lies on the circle. Using the Pythagorean theorem, this function has a
geometric interpretation shown in Figure 2.2.
Using this definition, a pair s = (p, w(p)) of a point and its weight is called a site

of the power diagram, which can be interpreted as a sphere with a radius of
√
w(p).

Every such site gets assigned its partition of the space where there is no other site with
lower power.
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2.1 Definition of Power Diagrams

s
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(a) Interpretation of pow

pow(x, s1)

pow(x, s2 )

s1

s2

x

(b) Equality of powers of two spheres

Figure 2.2: Definition 2.1 has a geometric interpretation for points x lying outside of the sphere
s = (p, r). The power pow(x, s) = d(x, p)2 − r2 can be interpreted as the length of a
tangent of point p to the sphere s. When comparing the powers of two non-intersecting
spheres s1, s2, the set of points x for which it holds that pow(x, s1) = pow(x, s2) is a
hyperplane perpendicular to the line connecting the two centers but not necessarily its
bisector.

Definition 2.2 (Power Diagram)
For a finite set of sites S = {s1, . . . , sn} ⊂ Rd×R≥0, the mapping from spheres to their
corresponding cells is given by

cellS :

S → P(Rd)

s 7→
{
x ∈ Rd | ∀t ∈ S \ {s} : pow(x, s) ≤ pow(x, t)

} . (2.2)

The power diagram PD(S) is the set of all cells corresponding to all sites and their
non-empty intersections and given by

PD(S) :=

⋂
p∈P

cellS(p) | P ∈ P(S) \ {∅}

 \ {∅} . (2.3)

Figure 2.3 shows an example of a power diagram in two dimensions. After introducing
some geometric notation, the remainder of this chapter will show some properties of
power diagrams in d dimensions.
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Chapter 2 Power Diagrams
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Figure 2.3: The power diagram of the five sites PD({s1, . . . , s5}) is the set of their cells, whose
boundaries are shown in the figure. Boundaries are defined by sets of points for which
adjacent sites have equal minimizing power.

2.2 Geometric Notation
Like Voronoi diagrams, power diagrams in the euclidean case will be shown to consist
of polyhedral regions which share faces at their boundaries. An extensive introduction
into polyhedra can be found in [Grü03] by Grünbaum and an introduction into convex
analysis is given by Gritzmann in [Gri13]. The following repeats some notations of
[Aur87].

Let n ∈ Rd with n 6= 0 and let b ∈ R. Then h =
{
x ∈ Rd | nTx = b

}
is a hyperplane

and h≤ =
{
x ∈ Rd | nTx ≤ b

}
is a (closed) halfspace in Rd. A j-flat f is a set expressible

as the intersection of d− j, but no fewer, hyperplanes. It is an affine subspace of Rd

with dimensionality j and is expressible as the affine hull of j + 1 linearly independent
points in f .
A set P ⊆ Rd is called a polyhedron iff it is expressible as the intersection of a

finite number of halfspaces. P is a j-polyhedron if there is a j-flat, but no (j − 1)-flat,
which contains P . The boundary of P consists of a finite number of i-polyhedra with
0 ≤ i < j ≤ d, which are called the i-faces of P . 0-, 1- and (j − 1)-faces are called
vertex, edge and facet respectively. P is called a polytope if it is bounded and can then
also be expressed as the convex hull CH of its 0-faces.

Two d-polyhedra P and Q are called (combinatorically) dual if there is a bijection ϕ
from the j-faces of P to the (d− j − 1)-faces of Q for 0 ≤ j ≤ d− 1 such that f ⊆ g
for any two faces f and g of P iff the converse ϕ(f) ⊇ ϕ(g) holds in Q.
A polytope can be separated into its upper and lower parts with respect to some
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2.3 Properties of Power Diagrams

vector v 6= 0. A facet of the convex hull with outwards pointing normal vector n is
part of the lower convex hull CHb if 〈n, v〉 < 0 and part of the upper convex hull CHt
if 〈n, v〉 > 0. Facets with normal vector orthogonal to v are not attributed to either
group. Any other face is in the lower or upper convex hull if it is contained in a facet
which is in CHb or CHt respectively.

A cell decomposition C of Rd is a finite family of polyhedra. In this family, every
face of a polyhedron in C is itself a member of C and every non-empty intersection of
any two members of C is a face of each of them. Lastly, the union of all polyhedra
must be the whole space, i.e.

⋃
f∈C f = Rd. Full-dimensional polyhedra, or d-faces, of

C are called cells. C and a (d+ 1)-polyhedron P are called affinely equivalent if there
exists a central or parallel projection ϕ such that for every face f ∈ C it holds that
f = ϕ(g) for some face g of P .
These notations can now be used to describe power diagrams in an algebraic way

and to show that they define a cell decomposition.

2.3 Properties of Power Diagrams
The boundaries of the cells a power diagram are given by sets of points for which the
powers with respect to at least two sites are equal. Using the definition of the power
function in Definition 2.1, it can be shown that these boundaries are hyperplanes.
Lemma 2.3 ([cf. Aur87, Observation 1])
Let s = (zs, r

2
s) and t = (zt, r

2
t ) be spheres in Rd with zs 6= zt. The points x for which

pow(x, s) = pow(x, t) are called the chordale of s and t and form the hyperplane

chor(s, t) =
{
x ∈ Rd | 2(zs − zt)Tx = r2

t − r2
s − zT

t zt + zT
s zs

}
(2.4)

which is perpendicular to the line connecting zs and zt.

The chordal of two concentric spheres is not defined, but can be assumed to be at
infinity. Note that if rs = rt, the chordal of the two spheres is the bisector of the
line connecting zs and zt. A power diagram for which all radii are equal is therefore
equivalent to the Voronoi diagram of the centers.
The normal vectors of the chordales of three spheres are given by the pairwise

differences of their centers. Since any of these differences can be expressed through the
other two, their intersection has higher dimensionality than a general intersection of
three hyperplanes can have.
Lemma 2.4 ([cf. Aur87, Observation 2])
Let s, t and u be spheres in Rd with d ≥ 2. If the spheres are not collinear, the
intersection of their chordales chor(s, t)∩ chor(t, u)∩ chor(u, s) is a (d− 2)-flat. If they
are collinear, the three chordales are parallel. More generally, the chordales of a sphere
with k ≤ d non-collinear other spheres in Rd intersect in a (d− k)-flat.
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Chapter 2 Power Diagrams

s5
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1, 5

1, 4

4, 5
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Figure 2.4: The cell of site s2 in this two-dimensional power diagram is empty. This can
happen, if the sphere of a site is completely contained in a sphere of an other site.
However, this condition is not sufficient. The sphere s4 does have a non-empty cell,
but its center is not part of its cell.

Every cell in the power diagram is either unbounded or it is bounded by chordales
or intersections of other chordales.
Lemma 2.5 ([cf. Aur87, section 2.2, p. 80])
The power diagram PD(S) of a finite set of spheres in Rd is a cell decomposition of Rd.

Proof. Let S be a finite set of n spheres in Rd whose centers have an affine dimension
of d. Since the cell of every sphere s ∈ S is bounded by halfspaces defined by its n− 1
chordales (which are not necessarily all part of the power diagram), it can be expressed
as the intersection of n− 1 halfspaces and is therefore a d-polyhedron. Together with
the fact that every x ∈ Rd is part of some cell of PD(S) by definition, this shows that
PD(S) is a cell decomposition of Rd, since the combinatorical structure of the shared
faces of the polyhedra is guaranteed by definition. 2

Figure 2.4 shows that in contrast to Voronoi diagrams, there can be spheres which
have empty cells in a power diagram. This can happen if a is sphere completely contained
in another sphere. This is not a sufficient condition however. Such a constellation can
also lead to a sphere s having a cell for which it holds that zs 6∈ cellS(s) 6= ∅.

While it is easy to calculate the chordale of two spheres, the main question to answer
when constructing power diagrams is which chordales have non-empty intersection
with their cells and which j-faces (for 0 ≤ j < d− 1) shared by which cells exist. To

8



2.3 Properties of Power Diagrams

describe all existing bounded faces, one can find all 0-faces and remember which sets
of them describe the existing faces of higher dimensionality via their convex hulls. The
following lemma shows that if a power diagram contains a 0-face, finding those faces
and the cells which are adjacent to them is sufficient to construct a set of all non-empty
cells and therefore decide whether some specific cell is empty.

Lemma 2.6
Let S ⊂ Rd × R≥0 be a finite set of spheres. If PD(S) contains a 0-face, then every
cell in PD(S) contains a 0-face.

Proof. Let S = {s1, . . . , sk} ⊂ Rd × R≥0 be a finite set of spheres si = (zi, r
2
i ) with

k ≥ d + 2 and s1, . . . , sd, sd+1, sd+2 ∈ S such that (the cell of) sd+1 shares a 0-face
with s1, . . . , sd in PD(S). Since the chordales of sd+1 with these sites intersect in a
0-face, their d normal vectors {zi − zd+1 | 1 ≤ i ≤ d} must be linearly independent, or
equivalently, it holds that dim(aff({z1, z2, . . . , zd+1})) = d.
Suppose that sd+2 does not contain a 0-face. Then, a face f of lowest dimension in

the polyhedron of sd+2 has at least dimension dim(f) = 1, giving the polyhedron a
non-empty lineality space.
The vectors in this lineality space must be perpendicular to all chordales of sd+2,

since the polyhedron is bounded by them. A subset of the normal vectors of these
chordales is the set C = {zi − zd+2 | 1 ≤ i ≤ d+ 1}. Note that

dim(C) = dim (aff ({z1, z2, . . . , zd+2})) ≥ dim (aff ({z1, z2, . . . , zd+1})) = d (2.5)

and therefore, the lineality space must be empty, which is a contradiction. Note that
if k < d+ 1, the power diagram cannot contain a 0-face and if k = d+ 1, the power
diagram can only contain a zero face if all spheres are adjacent to it. 2
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Chapter 3

Embedding in d + 1 Dimensions

To derive an algorithm that efficiently computes the cells of a power diagram via the
incidence structure of the faces of the boundaries, power diagrams of d dimensions
will be embedded into d+ 1 dimensions using a transformation function to map the
spheres to hyperplanes. This will lead to a result identifying these power diagrams with
polyhedra in d+ 1 dimensions which can be expressed as the intersection of halfspaces
pointing upwards. Using this identity together with a duality mapping for polyhedra
will finally connect power diagrams to convex hulls and be the basis of the algorithm
to compute power diagrams.

3.1 The Transformation Function
The embedding of power diagrams in a space of one dimension higher relies on the
fact that the power function of a sphere in Rd can be calculated using distances to
some hyperplane in Rd+1. These hyperplanes can be obtained from the spheres using a
transformation function.

Inspect the space Rd+1 and let the original space Rd be identified with the hyperplane
h0 : xd+1 = 0. Let H be the set of all hyperplanes not parallel to the xd+1 axis

H :=
{
h ⊆ Rd+1 | ∃a ∈ Rd, ad+1 ∈ R : x ∈ h⇔ xd+1 = aTx[d] + ad+1

}
. (3.1)

Thus, h0 ∈ H. Lastly let U denote the paraboloid xd+1 = xT
[d]x[d] with x[d] =

(x1, . . . , xd)T . Then the transformation function is defined as follows.

Definition 3.1 (Transformation Function)
The transformation function Π connects spheres in Rd to hyperplanes in Rd+1 and is
given by

Π :

Rd × R≥0 → H

(z, r2) 7→
{
x ∈ Rd+1 | xd+1 = 2xT

[d]z − z
T z + r2

} . (3.2)

11
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x2

x1

x3

s1

s2

Π(s2)

Π(s1)

U

Figure 3.1: The projection function Π maps the spheres s1 and s2 to hyperplanes in d + 1
dimensions. The intersection of the projections Π(si) and the paraboloid U are the
orthogonal projections of si onto the paraboloid. The orthogonal projection onto the
x1-x2-plane of the intersection of the two hyperplanes is the chordale of the two spheres.
This figure is a recreation of [Aur87, Figure 4].

This transform has a direct connection to U since for any sphere s = (z, r2) it holds
that

x ∈ Π(s) ∩ U ⇔ xd+1 = 2xT
[d]z − z

T z + r2 ∧ xd+1 = xT
[d]x[d] (3.3)

⇔ 2xT
[d]z[d] − zT

[d]z[d] + r2 = xT
[d]x[d] (3.4)

⇔ d(x[d], z) = r2 (3.5)
⇔ x[d] ∈ z + r · Sd. (3.6)

The intersection of Π(s) and U is therefore the vertical projection of s onto U . A
visualization of this can be seen in Figure 3.1. The following lemma proofs that this
mapping is an identification of the two concepts.

12



3.1 The Transformation Function

Lemma 3.2
The transform Π is a bijection from spheres in Rd to hyperplanes in H with nonempty
intersection with U .

Proof. Clearly, Π is injective since two spheres with different centers map to hyper-
planes with different normal vectors n normalized to nd+1 = −1 and two concentric
spheres need to share the same radius r to map to hyperplanes with the same offset.
Π is also surjective if every intersection of U with a hyperplane in H is an ellipsoid
which maps to a sphere if projected to h0.

Let n ∈ Rd+1 be the normal vector with nd+1 = −1, let b ∈ R be an offset and let
h =

{
y ∈ Rd+1 | nT y = b

}
be a hyperplane with h ∈ H. The intersection of h with U

is given by

h ∩ U =
{
x ∈ Rd+1 | xd+1 = b− nT

[d]x[d] = xT
[d]x[d]

}
(3.7)

where the projection to h0 is

b− nT
[d]x[d] = xT

[d]x[d] (3.8)

⇔ xT
[d]x[d] + nT

[d]x[d] − b = 0. (3.9)

To show that this projection is a sphere, it must be described by a center v ∈ Rd

and a radius α ≥ 0 in the equation

d(x[d], v)2 = α. (3.10)

Now let α = b+ 1
4n

T
[d]n[d] and v = −1

2n[d]. Then

d(x[d],−
1
2n[d])2 = b+ 1

4n
T
[d]n[d] (3.11)

⇔ xT
[d]x[d] + nT

[d]x[d] + 1
4n

T
[d]n[d] = b+ 1

4n
T
[d]n[d] (3.12)

⇔ xT
[d]x[d] + nT

[d]x[d] − b = 0, (3.13)

so the projection of the intersection is indeed a sphere if b > −1
4n

T
[d]n[d], a point if

b = −1
4n

T
[d]n[d] and h does not intersect U otherwise. 2

Because Π(s) is the vertical projection of spheres to U , the resulting hyperplanes
can also be used to compute the power of some point with respect to s.
Lemma 3.3 ([cf. Aur87, Observation 4])
Let s = (z, r2) be a sphere in h0 and x ∈ h0. Let x′ and x′′ denote the vertical
projections of x onto U and Π(s). It then holds that

pow(x[d], s) = d(x, x′)− d(x, x′′). (3.14)

13



Chapter 3 Embedding in d+ 1 Dimensions

Proof. Since the projections of x do not change the first d coordinates, it holds that
d(x, x′) = xT

[d]x[d] and d(x, x′′) = 2xT
[d]z− z

T z + r2. The difference d(x, x′)− d(x, x′′) is
given by (x[d] − z)T (x[d] − z)− r2, which is equal to pow(x[d], s). 2

This directly implies the following lemma, which connects chordales to the newly
formed hyperplanes by recognizing that the intersection of two hyperplanes in Rd+1

contains projected points with the same power value for the respective spheres.

Lemma 3.4
Let s and t be non-concentric spheres in h0. Then chor(s, t) is the vertical projection
of Π(s) ∩Π(t) onto h0.

3.2 Duality of points and hyperplanes
The hyperplanes established with the mapping Π will now be connected to specific
polar points to establish a bijective mapping between j-flats defined by the intersection
of these hyperplanes and (d− j)-flats in this dual domain.

Definition 3.5 (Polarity Function)
Let H as defined above and let F be the set of all flats which do not contain any
vectors parallel to the xd+1 axis, i.e.

F :=
{
f ⊆ Rd+1 | ∃1 ≤ k ≤ d+ 1 : ∃h1, . . . , hk ∈ H : ∅ 6= f =

k⋂
i=1

hi

}
. (3.15)

The polarity function ∆ then is a mapping in F given by

∆ :



F → F

f 7→



{(
1
2a
−ad+1

)}
if h ∈ H with x ∈ h⇔ xd+1 = aTx[d] + ad+1⋃

h∈H:
f⊆h

∆(h) if dim(f) < d

.

(3.16)

Let h ∈ H be a hyperplane and p ∈ Rd+1. The images ∆(h) and ∆(p) are called the
pole and polar hyperplane of p and h respectively. The following lemma shows that ∆
is involutory, i.e. its own inverse, and that it connects flats of different dimensionalities
in a dual manner.
Lemma 3.6
∆ is an involutory function and a bijection from j-flats to (d − j)-flats in F for
0 ≤ j ≤ d.

14



3.2 Duality of points and hyperplanes

Proof. Let F = f +X ⊂ Rd+1 ∈ F be some flat with f ∈ Rd+1, X a linear subspace
with dim(X) = j for 0 ≤ j ≤ d and let

X⊥ =
{
n ∈ Rd+1 | ∀x ∈ X : 〈n, x〉 = 0

}
(3.17)

be the set of all vectors orthogonal to X for which dim(X⊥) = d − j + 1. Then all
hyperplanes containing F have a normal vector which is in X⊥. Let n ∈ X⊥ and

h(n) =
{
x ∈ Rd+1 | 〈n, x− f〉 = 0

}
(3.18)

=
{
x ∈ Rd+1 | nd+1 · xd+1 = −nT

[d]x[d] + nT f
}

(3.19)

its corresponding hyperplane containing F . Note that by definition of F , for all n ∈ X⊥
it holds that nd+1 6= 0. Then let N =

{
n ∈ X⊥ | nd+1 = 1

}
be the set of all possible

normalized normal vectors with dim(N) = d− j and

∆(F ) = ∆(h(N)) (3.20)
=
⋃

n∈N

∆(h(n)) (3.21)

=
⋃

n∈N

∆
({
x ∈ Rd+1 | xd+1 = −nT

[d]x[d] + nT f
})

(3.22)

=
⋃

n∈N

{(
−1

2n[d]
−nT f

)}
(3.23)

=
⋃

n∈N

{(
−1

2n[d]
−nT

[d]f[d] − fd+1

)}
. (3.24)

∆(F ) is therefore a (d− j)-flat which is the result of an affine transformation of N .
Now assume that ∆(F ) 6∈ F . Then ∆(F ) is not expressible as the intersection of

hyperplanes in H and therefore, there must exist two different d(1), d(2) ∈ ∆(F ) with
d

(1)
[d] − d

(2)
[d] = 0. Let n(1), n(2) ∈ N with ∆(h(n(1))) =

{
d(1)

}
and ∆(h(n(2))) =

{
d(2)

}
.

Then it holds that

0 = d
(1)
[d] − d

(2)
[d] (3.25)

= ∆(h(n(1)))[d] −∆(h(n(2)))[d] (3.26)

= −1
2n

(1)
[d] + 1

2n
(2)
[d] (3.27)

and n
(1)
[d] = n

(2)
[d] . But since n(i) ∈ N implies that n(1)

d+1 = n
(2)
d+1 = 1 it follows that

n(1) = n(2) and therefore d(1) = d(2), which is a contradiction, so ∆(F ) ∈ F . This
proofs the well-definedness of ∆.
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Chapter 3 Embedding in d+ 1 Dimensions

The last step is to show that ∆ is involutory. It holds that

x∗ ∈ ∆(∆(F )) =
⋃

h∈H:
∆(F )⊆h

∆(h) (3.28)

⇔ ∃h ∈ H : ∆(F ) ⊆ h ∧ x∗ ∈ ∆(h) (3.29)

⇔ ∀x ∈ ∆(F ) : xd+1 = 2
(
x∗[d]

)T
x[d] − x∗d+1 (3.30)

⇔ ∀n ∈ N : −nT f = −2
(
x∗[d]

)T
· 1

2n[d] − x∗d+1 (3.31)

⇔ ∀n ∈ N : x∗ ∈ h(n) (3.32)
⇔ x∗ ∈ F (3.33)

and therefore ∆(∆(F )) = F for any face F ∈ F . 2

An additional property of ∆ is its preservation of relative positions of points and
hyperplanes.

Lemma 3.7 ([cf. Aur87, Observation 5])
Let p ∈ Rd+1 and h a hyperplane in Rd+1. Then p is above, in or below h with respect
to the (d+ 1)th component iff ∆(h) is above, in or below ∆(p) respectively.

Proof. Let x, n ∈ Rd+1 and h =
{
y ∈ Rd+1 | yd+1 = nT

[d]y[d] + nd+1
}
a hyperplane in

Rd+1. Then by definition and by Lemma 3.6 it holds that

∆(h) :=
(

1
2n
−nd+1

)
∈ Rd+1 (3.34)

∆(p) =
{
y ∈ Rd+1 | yd+1 = 2xT

[d]y[d] − xd+1
}
. (3.35)

Any point y ∈ Rd+1 is above ∆(p) if

2xT
[d]y[d] − yd+1 − xd+1 > 0 (3.36)

and on or below the hyperplane when it is equal or smaller. Inserting ∆(h) into the
equation yields

2xT
[d]

(1
2n[d]

)
+ nd+1 − xd+1 = nT

[d]x[d] − xd+1 + nd+1 (3.37)

which is equal to the expression determining the relative position of x to h. 2
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3.3 Power Diagrams and Polyhedra

s1

s2

s3

s4

Π(s1)

Π(s2)

Π(s3)

Π(s4)

∆
(
Π(s1)

)
∆
(
Π(s4)

)
∆
(
Π(s2)

)

∆
(
Π(s3)

)
Figure 3.2: The polar point ∆(Π(si)) of the hyperplane Π(si) shares the first d coordinates

with the sphere center zi. The polar of a face of lower dimension is the polar point of
all hyperplanes containing the face. The polar of the 1-face contained in Π(s1) ∩Π(s3)
is the convex hull of the polars of the two hyperplanes. The lower convex hull of the
polar points is dual to the power diagram.

3.3 Power Diagrams and Polyhedra
Having established the bijectivity of Π it can be shown that power diagrams in Rd

can be identified with boundaries of (d+ 1)-polyhedra. Since Π provides a mapping
to hyperplanes which intersect U , only polyhedra which are bounded by halfspaces
defined by such hyperplanes can be considered. Any other polyhedron can however
be converted to such a polyhedron by moving it up in xd+1-direction, preserving their
combinatorical structure.
Theorem 3.8 ([cf. Aur87, Theorem 4])
For any (d+ 1)-polyhedron P which is expressible as the intersection of upper halfspaces
of hyperplanes with normal vectors with their (d+ 1)th coordinate equal to −1, there
exists an affinely equivalent power diagram in h0 and vice versa.

Proof. Let P =
⋂n

i=1 h
≤
i be the intersection of upper halfspaces of hyperplanes hi

with normal vectors with (d+ 1)th coordinates equal to 1 such that for facet fi of P it
holds that fi ⊆ hi. Also assume that hi ∩ U 6= ∅ for all i which can be achieved by
moving the polyhedron in xd+1-direction. This movement does not affect the desired
affine equivalence.
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Chapter 3 Embedding in d+ 1 Dimensions

Lemma 3.2 implies that there is a set S = {s1, . . . , sn} of spheres in h0 such that
Π(si) = hi. Using Lemma 3.3 it holds that the vertical projection of any x ∈ h0 onto
P is in fi (and therefore hi) iff x ∈ cellS(si): The point x is in the cell of si iff si

minimizes the power function for this point. Since pow(x, si) = d(x, x′)− d(x, x′′) with
x′ being its projection to U and x′′ being its projection to Π(si), the distance of x to
Π(si) must therefore be maximal, i.e. fi must contain x′′. This means that cellS(si)
is exactly the vertical projection of fi onto h0 for all 1 ≤ i ≤ n, giving that PD(S) is
affinely equivalent to P .
Conversely, given any set of spheres S in h0 a corresponding polyhedron can be

constructed by intersecting the upper halfspaces of the hyperplanes in Π(S). 2

To also describe polyhedra P generated using the intersection of upper halfspaces, one
can inspect the reflection of P through h0 as described in [Aur87].

Having established the existence of an affinely equivalent polyhedron for each set of
spheres in h0, the following theorem will show that using the polarity function ∆, it
is possible to relate power diagrams to convex hulls. A power diagram is called dual
to a convex hull if there exists a polyhedron such that the power diagram is affinely
equivalent to the polyhedron as described in Theorem 3.8 and this polyhedron is dual
to the convex hull. An example of this duality can be seen in Figure 3.2.
Remember that a convex hull splits into its top and bottom part with respect to

some vector v given by the sign of the scalar product of v with outwards pointing
normal vectors, where orthogonal facets are assigned to neither parts. In the following,
separations with respect to the xd+1-axis will be considered.
Theorem 3.9 ([cf. Aur87, Theorem 5])
For any finite set M ⊂ Rd+1 there exists a set S of spheres in h0 such that PD(S) is
dual to CHb(M).

Proof. By Theorem 3.8 there exists an affinely equivalent polyhedron P for each PD(S)
in h0 which is defined by the intersection of the upper halfspaces of the hyperplanes
H = {hi | hi = Π(si), 1 ≤ i ≤ n} with n = |S| and vice versa. Let M = ∆(H) be the
set of all polars of the hyperplanes corresponding to all spheres. It is to be shown that
CHb(M) is dual to P .

Let fi be the facet associated with hi (see the proof of Theorem 3.8) and let pi = ∆(hi).
Let also fi and fj be adjacent in a (d− 1)-face g (1 ≤ i < j ≤ n). Then every x ∈ g is
in hi ∩ hj and above each h ∈ H \ {hi, hj} via Lemma 3.3.
Lemma 3.7 now implies that exactly in this case it holds that pi, pj ∈ ∆(x) and

every other point p ∈M \ {pi, pj} is above ∆(x). The line defined by pi and pj , which
is ∆(g), therefore defines an edge of CHb(M).
An analogous argument holds for all other j-faces (0 ≤ j < d− 1) by substituting

the pair of faces by a set of faces adjacent in a j-face in this proof. P is thus dual to
CHb(M) and therefore, PD(S) is, too. 2
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Chapter 4

Constructing Power Diagrams
In this chapter, the theoretical results of the previous chapters will be applied to the
formulation of algorithms to construct the power diagram PD(S) of some set of spheres
S in d dimensions. Lemma 2.4 implies that the cells of those power diagrams are
polyhedra which share faces at their boundaries.
To represent those boundaries, incidence lattices will be introduced. Also based on

Lemma 2.4, a naive algorithm constructing all 0-faces can be formulated, which is
based on the observation that every such face is defined by at least (d + 1) spheres.
Lastly, an efficient algorithm based on the results of Chapter 3 and the known problem
of constructing convex hulls will be presented and its running time analyzed.

4.1 Incidence Lattices
Theorem 3.8 establishes that for every power diagram in d dimensions there is a (d+ 1)-
polyhedron which is affinely equivalent. This means that all chordales which exist in
the power diagram and their intersections which form flats of lower dimensionality are
represented as faces in this polyhedron as can be seen from Lemma 3.4. To represent
all faces which are boundaries of cells in the power diagram, one can therefore choose
a data structure which represents the faces of the equivalent polyhedron.

Grünbaum [Grü03] observes that by creating a partial order on faces of a polyhedron
induced by set inclusion of the points in the faces, one can obtain the so called incidence
lattice of the polyhedron. The two-dimensional case is also described in more detail in
[EOS86]. After the following definition, an important result about the size of these
lattices will be presented.
Definition 4.1 (Incidence Lattice)
Let P be a polyhedron whose set of non-empty faces is denoted by F . The incidence
lattice of P is a directed graph

IL(P ) := (F,E) (4.1)

with the set of edges E given by

E :=
{

(f1, f2) ∈ F 2
∣∣∣f1 ( f2 ∧ @f3 ∈ F : f1 ( f3 ( f2

}
. (4.2)
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v1 v2

v3v4

1 2 3 4

{1, 2} {2, 3} {3, 4} {1, 4}

{1, 2, 3, 4}

s1 s2

s3s4

Figure 4.1: The polytope on the left is given as the convex hull of {v1, . . . , v4}. The minimal
nodes of the incidence lattice are the four vertices, while the maximal node is the
complete polytope. The 1-faces (edges) form the middle layer of the lattice. The dual
power diagram is a Voronoi diagram which can be seen on the right side which has an
incidence structure described by the same lattice with reversed edges.

The minimal vertices of an incidence lattice are the faces of lowest dimension in the
polyhedron, while the single maximal node is the polyhedron itself.
Lemma 3.6 implies that a dual polyhedron obtained using the polarity function ∆

has a dual combinatorical structure compared to the original polyhedron. Since every
j-face has been replaced by a (d− j)-face, the subset-relationship between two faces
are reversed, i.e. if f1 ( f2, then ∆(f1) ) ∆(f2). This directly yields that the incidence
lattice of this dual polyhedron is isomorphic to the graph created by reverting all
edges in the original incidence lattice. Together with Theorem 3.8 it follows that the
incidence lattice describing the boundaries of a power diagram can be obtained from an
incidence lattice of the lower part of a convex hull by reverting all edges in the lattice.
Figure 4.1 shows an example of this relationship. A square defined by four vertices

can be interpreted as a degenerated lower convex hull in three dimensions. It is then
dual to a Voronoi diagram in two dimensions whose incidence structure is described by
the same incidence lattice with reverted edges.
Since every non-empty face at the boundary between two cells is represented by

a node in the incidence lattice, the following result by Brondsted [Bro12] bounds
the size of incidence lattices describing a power diagram (and therefore the size of
incidence lattices of polyhedra which are expressible as intersections of upwards pointing
halfspaces).

Lemma 4.2
Let S be a set of n spheres in Rd with n > d > 0 and let fj denote the maximal
number of j-faces of a (d+1) polyhedron with n facets. Then fj ∈ O(ndd/2e) and PD(S)
contains at most n cells, fj j-faces for 1 ≤ j ≤ d− 1 and f0 − 1 vertices.
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4.2 Naive Algorithm

A direct consequence of this lemma is that any algorithm constructing the complete
incidence lattice of some power diagram will have a running time in Ω(ndd/2e) for n
spheres in d dimensions. To lessen the impact of higher dimensions somewhat, the
implementation presented here will create shallow incidence lattices which only contain
the 0-faces (vertices), 1-faces (edges) and d-faces (cells) of a power diagram.

4.2 Naive Algorithm
For any power diagram which contains a cell with a 0-face, every cell contains a 0-face,
as stated by Lemma 2.6. The proof of the lemma yields that the existence of a 0-face in
a power diagram is guaranteed if there are at least d+ 1 linearly independent spheres,
which also is a necessary condition.

Faces are called internal faces of a power diagram if they can be expressed as the
convex hull of 0-faces, i.e. if they are polytopal. The naive algorithm presented here
uses these observations to find all 0-faces. Starting from the set of all existing 0-faces
together with the spheres which define them, it is possible to reconstruct all internal
faces inductively.
Since all 0-faces must be defined by at least d + 1 spheres, the naive algorithm

iterates over all groups of d + 1 spheres and checks whether they define a 0-face as
described in Algorithm 1. Operations of the incidence lattice are denoted using addition
and subtraction of nodes or edges to simplify the notation. To analyze the running
time, the different steps are analyzed separately and lead to a bound derived from the
combinatorical structure of G.
Theorem 4.3
Let S = {s1, . . . , sn} a set of spheres in d dimensions with n > d and at least d + 1
spheres linearly independent. Algorithm 1 then finds the 0-faces of PD(S) in O(

( n
d+1
)
·

max(d3, n)) time.

Proof. Line 2 is in O(1), line 3 in O(|G| · d) and the merge phase starting in line 10
can be achieved in O(|G| · d), where the factor comes from adding the edges from G2 to
the incidence lattice, assuming that adding an edge to the lattice can be done in O(1).
Finding the intersection p in line 5 amounts to solving a system of linear equations
with a matrix of size (d+ 1)× d, which takes O(d3) time. Line 8 needs to check every
sphere in S which is not in G and therefore can be bounded by O(n), while line 9 only
operates on the spheres in G and therefore only takes O(d) time. The running time
of this algorithm is therefore clearly dominated by the first loop since lines 5 and 7
could both have to be performed |G| =

( |S|
d+1
)

=
( n

d+1
)
times. This leads to the desired

bound. 2

If one assumes d� n, this running time can be approximated as O(nd+2). To con-
struct the complete incidence lattice of the power diagram, this shallow representation
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Chapter 4 Constructing Power Diagrams

Algorithm 1 Naive approach to finding 0-faces of power diagrams
Let S = {s1, . . . , sn} be a set of spheres in d dimensions with n > d and at least d+ 1
spheres linearly independent.

1: function FindZeroFaces(S)
2: IL← ∅ . Create empty incidence lattice
3: G ←

( S
d+1
)

. Find the set of all possible groups

4: for G in G do . Find 0-faces
5: P ←

⋂
s1,s2∈G chor(s1, s2) . Find intersection of all pairs of spheres in G.

6: if P = {p} then . P is a single point
7: Choose g ∈ G
8: if ∀o ∈ S \G : pow(p, o) ≥ pow(p, g) then . p is a 0-face
9: IL← IL + G+ {p}+ {(g, p) | g ∈ G} . Add 0-face to IL

10: for 0-faces p1, p2 ∈ IL do . Merge overdefined 0-faces
11: if p1 = p2 then . Merge p1 and p2
12: Find G2 corresponding to p2
13: IL← IL − {p2} . Remove p2 from IL
14: IL← IL + {(g2, p1) | g2 ∈ G2} . Add edges from G2 to p1

15: return IL

has to be filled by adding the internal j-faces for 1 ≤ j < d and unbounded faces would
need to be found. Since this naive algorithm is not applicable in practice due to its
running time, these questions were not explored further and it was only used as a test
implementation for the efficient algorithm presented in the next section.

4.3 Dual Algorithm
According to Theorem 3.9, an incidence lattice which is equivalent to the power diagram
PD(S) of some set of spheres S in d dimensions can be obtained using the lower part
of a certain convex hull in Rd+1. Seidel [Sei81] describes an optimal algorithm to
obtain convex hulls in even dimensions, while Preparata and Hong [PH77] describe one
which is optimal for d ∈ {2, 3}. The implementation to this paper uses the QuickHull
algorithm described in [BDH96]. Their results can be summarized as follows.

Lemma 4.4
Let M be a set of n points in Rd. The convex hull of M can be determined in O(n logn)
time for d = 3 and in O(n logn+ ndd/2e) time for d > 3. These bounds are optimal for
d = 3 or d even.
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4.3 Dual Algorithm

Algorithm 2 Power diagrams using embedding in d+ 1 dimensions
Let S = {s1, . . . , sn} be a set of spheres in d dimensions.

1: function PowerDiagram(S)
2: H ← Π(S) . Compute hyperplanes of spheres
3: P ← ∆(H) . Compute poles of the hyperplanes

4: IL← CH(P ) . Construct convex hull of P
5: (ILb, ILt)← Split IL into top and bottom parts . ILb represents CHb(P )
6: for face f in ILb do . Dualize ILb

7: if f is a facet then
8: Find the hyperplane h containing f
9: Replace f by the polar point ∆(h)

10: else
11: Replace j-face f by a (d− j)-face . 0 ≤ j < d

12: for vertex v in ILb do
13: Project v vertically onto h0. . Forget (d+ 1)st coordinates
14: return ILb

To construct a power diagram, it is now enough to follow the path of Chapter 3 to
transform it to d + 1 dimensions, calculate the convex hull CHb of the polar points
and project the results back to the original space. A more formal description can be
found in Algorithm 2. The different steps of the algorithm allow for a straightforward
analysis of its running time.

Theorem 4.5 ([cf. Aur87, Theorem 7])
Let S be a set of n spheres in Rd and denote the amount of time necessary to compute
the convex hull of n points in Rd as Td(n). Algorithm 2 then constructs PD(S) in
O(Td+1(n)) time.

Proof. Lines 1 and 2 can be performed in O(n) time. Let IL be the incidence lattice
constructed by line 4. Then line 5 and the loop at line 6 are bounded by O(|IL|). Since
line 4 must take at least Ω(|IL|) time, the construction of the convex hull of the polar
points dominates the running time of the algorithm. 2

Since Lemma 4.4 ensures the optimality of the convex hull algorithms and every
other operation in Algorithm 2 is dominated by them, this is an optimal algorithm to
construct power diagrams in d dimensions for d = 2 or d odd.

23





Chapter 5

Implementation

In addition to their theoretical description, the data structure and algorithms presented
in Chapter 4 were also implemented as part of this project. The implementation is
written in C++, making heavy use of features in the C++11 standard which introduces
a more functional and generic style to the language. References for these features can
be found in the newer editions of [Str86] and [Str14] and also in [Mey14]. To improve
readability, code presented in this paper will be pseudo code rather than concrete C++.
This chapter first describes the general architecture of the code written for this

interdisciplinary project. It continues by introducing a concrete implementation of the
incidence lattices presented in Section 4.1 based on directed graphs and then describes
how it is used to implement the dual algorithm.

5.1 Code Architecture
The program uses a command line interface which is mainly implemented in powerdia-
gram_main.cpp. The coordinates of the sphere centers and their radii are read from
textfiles, a parser for which is implemented in FromCSV.hpp. Based on parameters
supplied on the command line, both the naive algorithm of Section 4.2 implemented
in PowerDiagramNaive.hpp or the dual algorithm presented in Section 4.3 and
implemented in PowerDiagramDual.hpp can be performed.

Both of the algorithms return an incidence lattice which contains the 0-faces present
in the power diagram. The dual algorithm also calculates the 1-faces and the directions
of unbounded 1-faces. The incidence lattices are implemented in IncidenceLat-
tice.hpp and depend on an internal graph representation which is implemented in
BidirectionalGraph.hpp.
While the naive algorithm only depends on a permutation generator implemented

in AllChoices.hpp, the dual algorithm requires a convex hull algorithm. The
implementation supplies an interface to one such algorithm implemented in Convex-
HullQhull.cpp which is described in Section 5.3 and Appendix A.
In the following, both the implementations of the incidence lattices and the dual

algorithm will be described in more detail.
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5.2 Incidence Lattices
The incidence lattices described in Section 4.1 and [EOS86] can be used to represent
the subset-relationships between different faces of a polyhedron. Since it was shown in
Theorem 3.8 that a power diagram in d dimensions can be represented by a polyhedron
in d+ 1 dimensions, incidence lattices can also be used to represent the cells of power
diagrams via their shared boundaries.

According to Definition 4.1, incidence lattices are graphs where every face is a node
and two faces are connected with a directed edge if the source is a true subset of the
sink with no faces in between. The implementation of these lattices in IncidenceLat-
tice.hpp uses the graph data structure in BidirectionalGraph.hpp as an internal
representation. These graphs represent finite graphs with directed edges. They are
called bidirectional since it is possible to traverse the edges in both directions in O(1)
time.
To achieve this, every node is identified by some unique (numeric) identifier. The

graph is then modelled as a hash-map from those identifiers to entries. The entries are
tuples of two incidence lists and some value the node holds. In the case of incidence
lattices this value is used to store normal vectors or points. Element access of the graph
map has an amortized cost of O(1). The incidence lists for every node hold both all
successors and predecessors, allowing the direct access in either direction. Maintaining
both incidence lists increases the work necessary to insert and delete both nodes and
edges in terms of constant factors, but not in terms of complexity. With n being the
number of nodes, deletion of a node is in O(n) and the other operations are in O(1).

Incidence lattices are Hasse diagrams and therefore directed acyclic graphs. A node
in such a graph is called minimal if it does not have a predecessor and maximal if it
does not have a successor. Internal faces in the incidence lattice can be described as
the convex hull of their vertices. Since there are no non-empty faces which are true
subsets of vertices, they are the minimal nodes of an incidence lattice. Finding the
vertices which define internal faces therefore translates to finding the minimal nodes in
the graph which are connected to the face. For unbounded faces, the minimal nodes
connected to it also represent all adjacent vertices. Their convex hull does not produce
the face however, since it contains rays.

While constructing power diagrams, an empty incidence lattice has to be filled using
the information generated by some convex hull algorithm. During this process, the
lattice is usually shallow in the sense that it contains minimal nodes (the vertices) and
maximal nodes (the d-dimensional facets), but it does not yet contain all j-faces for
1 ≤ j < d. Adding a face which is not minimal requires finding existing edges in the
lattice which get cut when inserting the new face, an example of which can be seen in
Figure 5.1.

Every face which is not minimal needs to (not necessarily directly) be connected to
the minimal faces it contains, which in non-degenerate cases are vertices. Similarly, it
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1 2 3 4

{1, 2}

{1, 2, 3, 4}

1 2 3 4

{1, 2}

{1, 2, 3}

{1, 2, 3, 4}

Figure 5.1: The left figure shows part of an incidence lattice in the process of being filled
before the insertion of the new face {1, 2, 3}. To identify the red dashed edges which
need to be bisected by the new face, lower and upper boundaries have to be found.
The face {1, 2} is a largest subset of the new face and therefore an outgoing edge needs
to be replaced. The face {1, 2, 3, 4} is a smallest superset of the new face and therefore,
the new face has to point to it.

also needs to be connected to faces of higher dimensionality it is a subset of. Since the
lattice must not contain transitive edges, it is necessary to identify the correct edges to
be modified. In the following, the algorithm to find those edges will be described by
the example defined in Figure 5.1.
The algorithm for finding those maximal and minimal relevant faces can be seen in

Algorithm 3. Given a shallow incidence lattice as described in the left side of Figure 5.1,
inserting a new face into an incomplete lattice requires finding all the edges in the
existing lattice which have to be bisected by the new face.
Suppose the face f123 = {1, 2, 3} which represents the intersection of the cells

represented by the nodes 1, 2 and 3 should be added to the lattice. Since it already
contains the face f1234 = {1, 2, 3, 4}, there must be paths connecting those three
minimal nodes to f1234. The structure of the power diagram gives that f1234 ⊆ f123
and therefore, the lattice must contain the edge (f123, f1234) after the update. The
direction of the edge is a convention and could be chosen differently, depending on
whether the lattice is based on the primal or dual polyhedron. For the same reason,
the lattice must also contain the edge (3, f123), which would make the edge (3, f1234)
transitive, so it has to be removed. However, the edge (2, f1234) does not exist because
of the face f12 = {1, 2}. Lastly, suppose there existed a face f12345 = {1, 2, 3, 4, 5} in
the lattice. Then although f12345 ⊆ f123 holds, the edge (f123, f12345) must not be
added, since after connecting f123 to f1234, this edge would be transitive.
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Algorithm 3 Adding faces to an incidence lattice
Let IL be an incidence lattice, Vminimals the set of vertices to be combined to a face,
filter and continue predicates mapping from nodes to boolean truth values and
nextNodes mapping from nodes to sets of nodes.

1: function FindNodesBFS(v0, filter,continue,nextNodes)
2: Vvisited ← {v0}
3: Vtovisit ← Queue containing only v0
4: Vfound ← {}
5: while Vtovisit is not empty do
6: v ← Pop the first element of Vtovisit
7: if continue(v) then
8: for n in nextNodes(v) do
9: if n not in Vvisited then

10: Vvisited ← Vvisited ∪ {n}
11: Append n to Vtovisit

12: if filter(v) then
13: Vfound ← Vfound ∪ {v}
14: return Vfound

15: function FindGroups(IL, Vminimals) . Find maximal faces below of Vminimals
16: function isGroup(f)
17: return MinimalsOf(IL, f) ⊆ Vminimals

18: G ← {}
19: for v ∈ Vminimals do
20: G← FindNodesBFS(IL, v0, isGroup, isGroup,Successors(IL, ·))
21: G← {g ∈ G | @g′ ∈ G : (g, g′) ∈ IL} . Choose maximal nodes in G
22: G ← G ∪G
23: return G

24: function FindLUBs(IL, Vminimals) . Find minimal faces above of Vminimals
25: function isUB(f)
26: return Vminimals ⊆MinimalsOf(IL, f)
27: function isNotUb(f)
28: return not isUB(f)
29: Choose v0 ∈ Vminimals
30: G← FindNodesBFS(IL, v0, isUb, isNotUb,Successors(IL, ·))
31: G← {g ∈ G | @g′ ∈ G : (g′, g) ∈ IL} . Choose minimal nodes in G
32: return G

33: procedure AddFace(IL, Vminimals)
34: Vbelow ← FindGroups(IL, Vminimals)
35: Vabove ← FindLUBs(IL, Vminimals)
36: IL← IL−{(a, b) | a ∈ Vabove, b ∈ Vbelow} . Remove old edges
37: IL← IL + {Vminimals}+ {(b, Vminimals) | b ∈ Vbelow} . Add new face and edges



5.3 Dual Algorithm

To identify the existing nodes which are incident to edges which should be bisected,
faces above and below in the lattice are treated separately. A face is considered above
another face in the lattice if the set of minimal nodes it combines is a superset of the
minimal nodes of the other face and considered below if it is a subset. In the example,
f1234 is above of f123 while f12 is below it. Adding the face f123 now requires to bisect
exactly those edges which connect maximal faces below it to minimal faces above it. A
face f is considered maximal below (or a group) of f123 if there is no face which is also
below f123 but above f and minimal above (or a lub) in a symmetric manner. There
cannot exist other edges which have to be bisected since those would be transitive.
To find both groups and lubs, the program uses breadth first search. The groups

can be found by starting from each of the minimal nodes associated with the new
face f123 (i.e. 1, 2 and 3) and only continuing to new nodes which are also below the
new face, i.e. whose minimal nodes are a subset of the minimal nodes of the new face.
After finding all candidates, every node which is not maximal has to be removed. The
example in Figure 5.1 contains two groups, the faces {1, 2} and 3. The lubs can be
identified similarly by starting from any one of the minimal nodes of the new face and
exploring the lattice to find nodes which are above the new face. Note that those faces
must all be above this minimal node. Successors of faces which are above the new face
need not be considered. Again, after finding the candidates, every node which is not
minimal must be removed. The example contains one lub, the face f1234.
The graph data structure contains a generalized search which can be called using

function parameters to implement the similar searches described above. All searches
have a worst-case running time of O(n2) with n being the number of faces and
therefore nodes in the graph. To speed up the program, the incidence lattices cache
the minimal nodes of every node they contain, making the MinimalsOf-function an
O(1) operation. This is possible since it is not necessary to remove faces besides the
restriction operations.
This data structure forms the basis for both the naive algorithm and the efficient

algorithm using the convex hull of polar points. Since the implementation of the naive
algorithm in PowerDiagramNaive.cpp follows Algorithm 1 rather directly, the
following section will only describe the implementation of the efficient algorithm.

5.3 Dual Algorithm
The dual algorithm can be found in PowerDiagramDual.cpp. The main challenge
in its implementation is the construction of the convex hull of the polar points, which
are obtained by applying the functions Π and ∆ to the input spheres. Since the creation
of a convex hull is a known geometrical problem, this implementation uses libraries to
perform the task.
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Chapter 5 Implementation

While there exists a multitude of algorithms to construct convex hulls in both the
two and three-dimensional cases, there are surprisingly few alternatives available for
the general d-dimensional case. To make it possible to easily switch the algorithm used,
the concrete convex hull algorithms are encapsulated and are required to implement
a simple interface which takes a set of points and returns an incidence lattice. Since
these lattices are of exponential size in general, the algorithms are expected to return
a shallow version which only contain vertices, facets and ridges ((d− 2)-faces).

This implementation uses the generalization of the QuickHull algorithm for arbitrary
dimensions, a description of which can be found in [BDH96] and an interface to which
is implemented in ConvexHullQhull.cpp. QuickHull assumes that the input is
full-dimensional. It starts by creating a simplex from d+ 1 points and then iteratively
adds the remaining points to the convex hull. It does so by inspecting the facets of
the current convex hull and finding all points in the upper halfspace of a hyperplane
containing the facet with a normal vector which points to the outside of the convex
hull. If a point is above a facet in this sense, the facet is called visible from this point.
Out of the visible points for some facet the one with maximal distance to it gets chosen.
It is added to the convex hull by creating new simplices using horizontal ridges. A
ridge is called horizontal for a point if it connects two facets out of which one is visible
to the point and one is not. For well-behaved inputs, this operation should also add
some of the points closer to the facet to the convex hull. Those do not have to be
considered in later iterations. QuickHull is therefore a variant of the Beneath-Beyond
Algorithm described in [Grü63] and [CS89]. An alternative implementation of convex
hulls in general dimensions can be found in the CGAL library [CGA15].
After obtaining the shallow incidence lattice of the convex hull of the polar points,

this lattice needs to be split into the top and bottom parts as described in Algorithm 2.
Since only the bottom lattice is needed to construct the power diagram, all faces which
are not contained in a bottom-facing facet are removed from the incidence lattice. To
dualize the incidence lattice, the only non-trivial operation is to replace facets with
polar points of hyperplanes containing the facet. Replacing j-faces by (d − j)-faces
can be achieved by reversing all edges in the lattice or, equivalently, by interpreting
minimal nodes in the lattice as the maximal ones of the dual polyhedron and considering
predecessors instead of successors for the subset relationship. See Algorithm 4 for a
more formal description of this part of the algorithm.
If the convex hull algorithm returns a shallow incidence lattice which, besides the

vertices and facets, only contains ridges, the dualized lattice only contains edges (1-
faces) of the power diagram. To facilitate the output of these edges, an additional
step of the algorithm is the calculation of their directions. For internal edges, the
direction can be calculated as the difference of the two vertices which define the edge
via their convex hull. For unbounded edges, the direction must be contained in the
chordales of all pairs of spheres defining the edge (i.e. the minimal nodes of the node
representing the edge in the lattice). Assuming there is a 0-face in the power diagram,

30



5.3 Dual Algorithm

Algorithm 4 Finding ILb and dualizing it
Let IL be the incidence lattice of the convex hull of polar points.

1: procedure RestrictToBottomHull(IL)
2: Vbottoms ← {}
3: for f in MaximalNodes(IL) do . f is a dual facet
4: Vminimals ←MinimalsOf(f) . Vminimals contains dual vertices
5: n← OutwardsNormalToAffineSpace(Vminimals)
6: if nd+1 < 0 then . n points downwards
7: Vbottoms ← Vbottoms ∪ {f}
8: for f in IL do
9: if MaximalsOf(f) ∩ Vbottoms = ∅ then

10: RemoveFace(IL, f)

11: procedure DualizeLattice(IL)
12: for f in MaximalNodes(IL) do
13: Find the hyperplane h containing f
14: Replace f by ∆(h)

. No replacement of other faces necessary

Algorithm 5 Finding the direction of an extremal ray
Let IL be the incidence lattice of a power diagram, let f be an unbounded 1-face and
v a 0-face with v ⊂ f .

1: function FindDirectionOfUnboundedEdge(IL, f, v)
2: Vedge ←MinimalsOf(f) . Vedge contains primal spheres
3: Vvertex ←MinimalsOf(v)
4: Choose sactive ∈ Vedge
5: Choose sinactive ∈ Vvertex \ Vedge

6: d← NormalToAffineSpace(Vedge) . Possible direction
7: t← v + d . Test point
8: if pow(t, sinactive) < pow(t, sactive) then
9: d← (−1) · d

10: return d
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Chapter 5 Implementation

the unbounded edge is a ray starting from some vertex (see Lemma 2.6). Since a vector
orthogonal to all chordales could point both inwards and outwards, the correct direction
can be established by testing the power of one point as described in Algorithm 5.
Adding the directions of edges is the last step in constructing a (shallow) incidence

lattice describing the power diagram. This lattice can be used to extract information
about the power diagram like finding spheres whose cells are non-empty or identifying
adjacency relationships between spheres. Appendix B describes how the implementation
can be used to generate output which can be transformed to a tikz-picture like Figure 2.3
or Figure 2.4.
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Chapter 6

Conclusion

This paper introduced power diagrams which are a generalization of Voronoi diagrams.
It adds the notion of a real weight to every site of the diagram and introduces a new
distance function, the power of a point with respect to a site. The power function
gives rise to a geometric interpretation which identifies the site centers and weights
with spheres. The power diagram of a set of spheres is then a collection of polyhedral
cells where each cell is generated by a sphere. A point is part of its cell if a sphere
minimizes the power function in comparison to all other spheres.

After introducing some general properties of power diagrams, the main focus of the
project lies on the affine equivalency of power diagrams in d dimensions and those
polyhedra in d+ 1 dimensions which can be described as the intersection of half spaces
which point upwards in xd+1 direction. Using a polarity function which maps these
polyhedra to combinatorically dual ones, a dual relationship between power diagrams
and convex hulls in d+ 1 dimensions can be established.
This relationship can be used to derive an efficient algorithm to construct power

diagrams whose main geometric operation is the construction of a convex hull. After
describing this algorithm formally and introducing a data structure which can be used
to represent polyhedra and therefore power diagrams, this paper lastly presents a
concrete implementation of the results.
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Appendix A

Building the Code

The implementation presented in Chapter 5 is written in C++ making use of features
introduced into the language in the C++11 standard. These features have been part of
all major C++ compilers for some time. Usage of the standard should therefore not
pose problems for the build process on reasonably new systems. The build process has
been tested with GCC and Clang on Linux and MSVC on Windows.
The code depends on libraries for the processing of command line parameters, for

linear algebra and for the calculation of convex hulls.

gflags Gflags is a library for the simple processing of command line parameters
developed by Google [SS15]. It is licensed under the BSD license which poses
minimal restrictions on the redistribution of the covered software. Gflags is a
comparatively small and compact library which is not quite as feature rich as
alternatives like the program options of Boost, but is much easier to integrate in
a small project and provides enough possibilities to create a simple command
line interface to choose between different algorithms and outputs.

Eigen Eigen is an open library for fast and reliable linear algebra developed by Guen-
nebaud and Jacob [G+10]. It is licensed under the MPL license which is aims
to find a compromise between proprietary and open source developers and also
poses little restrictions on the redistribution. Eigen provides both data structures
for vectors and matrices and also implements many important primitives of linear
algebra like the solution of systems of linear equations.

Qhull Qhull is a library which implements the QuickHull algorithm for convex hulls
and is developed by Barber, Dobkin, and Huhdanpaa [BDH96]. It is licensed
under a custom license which allows both the redistribution and alteration of
the code. Qhull is one of the few choices for libraries implementing convex hulls
in arbitrary dimensions and has been chosen for this project for its speed and
numerical stability.

To simplify the compilation, the implementation of this interdisciplinary project
includes CMake scripts which automate most of the build process. CMake [MH07] is
a tool which allows programmers to specify how a program should be compiled in a
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Appendix A Building the Code

# Debug build using bundled libraries
$ make
# Clean bundled libraries and program
$ make distclean

# Release build using system libraries
$ make CMAKE_BUILD_TYPE=Release USE_BUNDLED_DEPS=0
# Clean program only
$ make clean

Listing 1: A simple invocation of make creates a debug build using bundles libraries. The com-
puter will download the libraries, build them and then build the power diagram program.
To specify the creation of an optimized release build, the variable CMAKE_BUILD_TYPE
can be used, while USE_BUNDLED_DEPS can be set to 0 to use system libraries. make
clean and make distclean can be used to remove the compiled files.

way which is independent of operating systems and compiler or IDE choices. CMake
generates project files in a toolchain of the user’s choice. It can, for example, create
Makefiles for a command line based build on Linux or it can create solutions which can
be used in Visual Studio on Windows. There are many parameters and customizable
choices to create build files using CMake. The following two sections will describe a
typical build process on both Linux and Windows, which can be customized via options
described in the documentation of CMake [MH15].

A.1 Linux
The CMake scripts can either use libraries installed on the target system (for example
via a package manager) or compile all libraries from source. The latter is achieved
by separating the build process into two steps, first downloading and building all
dependencies and then using those dependencies to create the final program.

Since a correct usage of these different steps can be cumbersome, the implementation
also provides a top level Makefile which automates the process. This make script
will invoke CMake to build the library dependencies or only build the main program.
It can be configured using variables shown in Listing 1.

A.2 Windows
Since Windows does not support Makefiles by default, the build process has to be
completed manually. After installing CMake, the easiest way to use it on Windows is to
use the cmake-gui program, which offers a graphical interface. The general structure
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A.2 Windows

of the build remains the same. If the bundled libraries should be built, CMake has to
be invoked twice, once for the libraries and once for the program itself.

The most common compiler on Windows is the MSVC compiler by Microsoft, which
is usually installed alongside Visual Studio. Both the libraries and the program can be
built in both 32 and 64 bit and while untested, using alternative compilers should be
possible. It is important to either build both parts with the same generator and to
either build both with debug information or both parts without it. While it is possible
to choose in Visual Studio in which mode to build the program, the choice has to be
made in CMake in case of the libraries.

To create a build on Windows, start with opening cmake-gui and creating the build
files for the libraries. Figure A.1 shows the correct path to ensure that the later step
will automatically find the dependencies. The source CMake files can be found in
third-party, while the binaries should be built into the folder .deps (including the
period).

After choosing the folders, click the “Configure”-button and choose the desired gener-
ator as shown in Figure A.2. CMake checks whether the compiler works correctly and
searches for correct paths. By default, the libraries will be built with debug information.
If this is not desired (e.g. for an optimized build), change the CMAKE_BUILD_TYPE
variable as shown in Figure A.3.

After pressing the “Generate”-button, .deps should contain a Visual Studio solution
file. Open the solution with Visual Studio and start a build process, ignoring the build
type options. Visual Studio will download the source files and compile the libraries,
installing them into the .deps folder. This concludes the first step.
Open a new cmake-gui and prepare the second step as shown in Figure A.4. The

destination folder which will contain the final executable can be chosen freely. After
clicking “Configure” again, choose the same generator as before and click “Generate” —
changing the CMAKE_BUILD_TYPE here has no effect. After this, the destination directory
contains a Visual Studio solution which can be used to build the final program as
shown in Figure A.5.
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Figure A.1: The third-party directory contains a CMake script which downloads and builds
the libraries needed by the powerdiagram executable. Choose .deps as the destination
folder to ensure that the second step will automatically find the dependencies.

Figure A.2: After clicking the “Configure”-button, CMake prompts the user to choose a
generator or toolchain. Visual Studio and MSVC are the most common toolchain on
Windows. Both 32 and 64 bit builds are possible, but both libraries and the final
program have to be built using the same generator.
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A.2 Windows

Figure A.3: To change the build type of the libraries from the default optimized release build
to a debug build, add the according entry after the “Configure” step.

Figure A.4: To build the program executable, CMake has to be run again with the top level
directory as the source folder.
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Figure A.5: The Visual Studio solution created by CMake for the program can be used to
build the code in both debug and release mode. CMake found the correct paths for
all libraries and configured Visual Studio accordingly. The solution explorer shows
the powerdiagram executable which contains the source files which can be edited and
debugged as usual.
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Running the Program

The compiled program has a simple command line interface which allows the selection
of power diagram sites, algorithms to be executed and output options. The program
includes a short documentation which can be viewed by invoking ./powerdiagram
-help. The output of this invocation can be seen in Listing 2.

This chapter shows how to use the program to create a visualization of a two-
dimensional power diagram in the LATEX-package tikz with Figure 2.3 as an example.
The first step is to choose the sphere centers and radii. They are defined in two
different text files where each line defines a site. While the file defining the radii
contains one number per line, the different entries of the vectors of the sphere centers
are separated with commas, examples of which can be found in the examples folder.
A d dimensional input must contain at least (d+ 1) linearly independent sphere centers.
The files corresponding to Figure 2.3 are called garage_sites.csv for the centers
and garage_gamma.csv for the radii.

Sample usage:
./powerdiagram [Options] <centers> <radii>

For a complete help, use options --help or --helpfull.

Flags from (...)/powerdiagram/ConvexHullQhull.cpp:
-qhullout (Output string for Qhull (e.g. "f i s"))

type: string default: ""

Flags from (...)/powerdiagram_main.cpp:
-draw (Output Information needed to draw the Diagram)

type: bool default: false
-dual (Run the Dual Algorithm) type: bool default: true
-naive (Run the Naive Algorithm) type: bool default: false
-verbose (Verbose output) type: bool default: false

Listing 2: The output of running ./powerdiagram -help.
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# Manual invocation
$ ./powerdiagram -draw garage_sites.csv garage_gamma.csv > /tmp/intrmdt
$ util/tikz.py /tmp/intermdt
# Using the Makefile
$ make TIKZ_OUT=1 garage

Listing 3: To create a tikz picture from sphere centers and radii defined in text files, the
./powerdiagram -draw parameter can be used. If the program is invoked with this
parameter, it outputs a easily parseable format describing vertices and edges of a power
diagram, which gets saved to a temporary file. This output is then parsed by a Python
script which in turn creates a tikz picture. The Makefile mentioned in Appendix A.1
can also generate tikz output.

Creating a tikz output is a two-step process. The C++ executable itself cannot produce
tikz but rather outputs a format which is easily parseable. The file util/tikz.py
contains a Python-script which converts this intermediate format to tikz output. The
commands that need to be executed can be found in Listing 3 with the intermediate
output of the C++ program described in Listing 4. There is also a template in
util/template.tex which can be used to quickly compile the output of the script
files into a standalone image.
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# Spheres
s1 2 3 1
s2 5 0 1
s3 -2 0 3
s4 2 0 2
s5 4 2 1

# Vertices
p1 0.625 2
p2 4 0.75
p3 2.75 2

# Internal Edges
ei p1 p3 s1 s4
ei p2 p3 s4 s5

# External Edges
ee p1 s1 s3 d-0.6 0.8
ee p1 s3 s4 d 0 -1
ee p2 s2 s4 d-0 -1
ee p2 s2 s5 d0.894427 0.447214
ee p3 s1 s5 d0.447214 0.894427

Listing 4: The intermediate output format generated by ./powerdiagram -draw. The output
first enumerates both the spheres and vertices. Every internal edge can be defined as
the connection of two of the vertices, while the external edges are defined as a point and
a normalized direction of the ray. The additional annotations of the edge describe to
which cells of spheres the edge is incident.
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