Uncertainties Need a Purpose

TUTI

SIEMENS
lngeunuity for Uife

Markus Kaiser
mrksr.de

10 October 2019

Siemens AG, Technical University of Munich


https://mrksr.de

(7]
o
Q.
£
]
wv
©
c
©
(7]
k)
dd
£
1]
dud
S
()
(9}
c
>
=
£
oo
1 S
1]
s

0.5

-0.5



Marginal Uncertainties and Samples
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Case study: Wind propagation’
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Case study: Wind propagation

Shallow GP AMO-GP
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Case study: Wind propagation

Shallow GP AMO-GP




Reasoning about (un-)supervised learning is hard!

* What makes a model good?
* The marginal likelihood is not enough
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Reasoning about (un-)supervised learning is hard!

* What makes a model good?
* The marginal likelihood is not enough

* We can find good models with respect to some prior

* Why do we use badly understood priors then?

* Why do we ask for good performance relative to wrong priors?

Do we use priors as proxies for tasks?



Case Study: Bayesian Optimization?

* Task: Find the minimum of some function f given few observations

X, € argmin f(x)
X

» Assume Bayesian prior f ~ GP(-,-) and derive a posterior

* Use some acquisition function to translate to belief about minimum
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Case Study: Bayesian Optimization?

* Task: Find the minimum of some function f given few observations
X, € argmin f(x)
X

» Assume Bayesian prior f ~ GP(-,-) and derive a posterior

* Use some acquisition function to translate to belief about minimum

A

Obj
Objective

2Bodin et al. 2019.



Case Study: Bayesian Probabilistic Numerics®

* Task: Approximate a definite integral over f
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Case Study: Bayesian Probabilistic Numerics®

* Task: Approximate a definite integral over f

- jb fi e

* Assume Bayesian prior for f, gather Jobservations of f

* Derive a posterior belief about Q(f)
Assume f ~ GP(0, min(-,-)). Then the posterior marginal for Q(f) is

1]—1 1 J-1
/V(E Z(Zj+1 +z)(tj1 — t)), T Z(tj+1 - tj)3)
j=1 j=1

Trapezoidal rule

30ates and Sullivan 2019.
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Information operator
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Quantities of Interest

Information operator

s A~

Numerical Method

Quantity-of-Interest-function

Bayesian belief about % and % can be translated in belief about @.



Reinforcement Learning

* Task: Find a policy 7, with maximum value wrt. a system f and reward r

7, € argmax]E [J"(sp)] =

Z 1 Eps)lr(sp)]

* Assume Bayesian prior f ~ GP(-,-) and derive a posterior

» Use (stochastic) roll outs in the optimization problem

Yy

Agent

State Reward Action
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Quantities of Interest in Reinforcement Learning

Probabilistic Numerics Reinforcement Learning
U Latent function True system-dynamics
Q Definite Integral Optimal value
Y Function evaluations Batch/Online data
Q:U%U—>Q Integration Bellman principle
Y U—>Y Observation Exploration

B: % — Q@ Quadrature Policy search




A lower bound for the optimal value

Assuming that max r(s) = 0, then

T
VSV J7(s) < J.(8) = Jmax = D, V' - 0=0
t=0

]ﬂ- ]* ]max ]R

const
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A lower bound for the optimal value

Assuming that max r(s) = 0, then

T
VSV J7(s) < J.(8) = Jmax = D, V' - 0=0
t=0

J" Je Jmax R
—- -~
const

Y

p(J.[so) =J pUJ. 1) p(J|m.,s0.) p(o., ) dJ dr, df ds,
—— —
Likelihood  Trajectory System

= J PUmax|J) p(J | 7., 5o, £) p(om,, £) dJ dr, df dsy,



A variational bound for RL

log p(J. |so) = log J PUmax|) P 7., 50.£) p(a., £) dJ drz, df ds

Likelihood Deep GP

> Eq(so,...,sr)[logj P(Jmax |J)Md]] — klterm

Reward

= Eq(j)llog p(Jmax | )] - kiterm,



A variational bound for RL

log p(J. Iso) = log J PUmax|)) pU 17, 0. £) pl., ) dJ dz. df dsy

Likelihood Deep GP

= Eq(so,...,sT)[IogJ p(Jmax |J) p(.”SO’ ey ST) dJ] - klterm

Reward

= Eq(j)llog p(Jmax | )] - kiterm,

With the exponential likelihood and A = 1
P(Jmax |J) = Aexp(=A(Jmax = J)) = Aexp(AJ)

we have

Eq(])[log P(Jmax|J)] - klterm = Eq(])[]] - KL(q(m) | p(s.)) + const,



Case Study: MountainCar
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Case Study: MountainCar

After 1 step After 5 steps




Case Study: MountainCar

After 50 steps
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Summary

* | have a hard time reasoning about (un-)supervised learning

* Task-based uncertainties might be a way out
e Probabilistic Numerics formulates a nice framework

* Let's apply it to all the things!

Let's use this!
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